Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Med Genet ; 50(8): 507-14, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23644463

RESUMEN

BACKGROUND: GATA zinc finger domain containing 2B (GATAD2B) encodes a subunit of the MeCP1-Mi-2/nucleosome remodelling and deacetylase complex involved in chromatin modification and regulation of transcription. We recently identified two de novo loss-of-function mutations in GATAD2B by whole exome sequencing in two unrelated individuals with severe intellectual disability. METHODS: To identify additional individuals with GATAD2B aberrations, we searched for microdeletions overlapping with GATAD2B in inhouse and international databases, and performed targeted Sanger sequencing of the GATAD2B locus in a selected cohort of 80 individuals based on an overlap with the clinical features in the two index cases. To address whether GATAD2B is required directly in neurones for cognition and neuronal development, we investigated the role of Drosophila GATAD2B orthologue simjang (simj) in learning and synaptic connectivity. RESULTS: We identified a third individual with a 240 kb microdeletion encompassing GATAD2B and a fourth unrelated individual with GATAD2B loss-of-function mutation. Detailed clinical description showed that all four individuals with a GATAD2B aberration had a distinctive phenotype with childhood hypotonia, severe intellectual disability, limited speech, tubular shaped nose with broad nasal tip, short philtrum, sparse hair and strabismus. Neuronal knockdown of Drosophila GATAD2B orthologue, simj, resulted in impaired learning and altered synapse morphology. CONCLUSIONS: We hereby define a novel clinically recognisable intellectual disability syndrome caused by loss-of-function of GATAD2B. Our results in Drosophila suggest that GATAD2B is required directly in neurones for normal cognitive performance and synapse development.


Asunto(s)
Drosophila/genética , Factores de Transcripción GATA/genética , Discapacidad Intelectual/genética , Discapacidades para el Aprendizaje/genética , Mutación , Sinapsis/metabolismo , Animales , Secuencia de Bases , Niño , Deleción Cromosómica , Variaciones en el Número de Copia de ADN , Drosophila/metabolismo , Drosophila/ultraestructura , Femenino , Humanos , Datos de Secuencia Molecular , Neuronas/metabolismo , Proteínas Represoras , Sinapsis/genética , Síndrome
2.
Nat Commun ; 11(1): 6087, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257696

RESUMEN

Inositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1-/- induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis.


Asunto(s)
Enfermedades Cerebelosas/metabolismo , Quelantes/metabolismo , Citoplasma/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Ácido Fítico/metabolismo , Animales , Muerte Celular , Diferenciación Celular , Enfermedades Cerebelosas/diagnóstico por imagen , Enfermedades Cerebelosas/patología , Niño , Preescolar , Femenino , Técnicas de Inactivación de Genes , Células HEK293 , Homeostasis , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Trastornos del Neurodesarrollo/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/farmacología , Fosforilación , Células Madre/efectos de los fármacos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA