Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
EMBO J ; 43(9): 1740-1769, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565949

RESUMEN

The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Transducción de Señal , Transactivadores , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Femenino , Transactivadores/metabolismo , Transactivadores/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Línea Celular Tumoral , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Núcleo Celular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
2.
Chembiochem ; : e202300853, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705850

RESUMEN

In this study, we present the probe SATE-G3P-N3 as a novel tool for metabolic labeling of glycerolipids (GLs) to investigate lipid metabolism in yeast cells. By introducing a clickable azide handle onto the glycerol backbone, this probe enables general labeling of glycerolipids. Additionally, this probe contains a caged phosphate moiety at the glycerol sn-3 position to not only facilitate probe uptake by masking negative charge but also to bypass the phosphorylation step crucial for initiating phospholipid synthesis, thereby enhancing phospholipid labeling. The metabolic labeling activity of the probe was thoroughly assessed through cellular fluorescence microscopy, mass spectrometry (MS), and thin-layer chromatography (TLC) experiments. Fluorescence microscopy analysis demonstrated successful incorporation of the probe into yeast cells, with labeling predominantly localized at the plasma membrane. LCMS analysis confirmed metabolic labeling of various phospholipid species (PC, PS, PA, PI, and PG) and neutral lipids (MAG, DAG, and TAG), and GL labeling was corroborated by TLC. These results showcased the potential of the SATE-G3P-N3 probe in studying GL metabolism, offering a versatile and valuable approach to explore the intricate dynamics of lipids in yeast cells.

3.
Chembiochem ; 24(2): e202200436, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36164720

RESUMEN

Liposomes are highly effective nanocarriers for encapsulating and delivering a wide range of therapeutic cargo. While advancements in liposome design have improved several pharmacological characteristics, an important area that would benefit from further progress involves cellular targeting and entry. In this concept article, we will focus on recent progress utilizing strategies including reversible covalent bonding and caging groups to activate liposomal cell entry. These approaches take advantage of advancements that have been made in complementary fields including molecular sensing and chemical biology and direct this technology toward controlling liposome cell delivery properties. The decoration of liposomes with groups including boronic acids and cyclic disulfides is presented as a means for driving delivery through reaction with functional groups on cell surfaces. Additionally, caging groups can be exploited to activate cell delivery only upon encountering a target stimulus. These approaches provide promising new avenues for controlling cell delivery in the development of next-generation liposomal therapeutic nanocarriers.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Liposomas/química , Portadores de Fármacos/química , Membrana Celular , Disulfuros
4.
Acc Chem Res ; 55(20): 2882-2891, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36174148

RESUMEN

The ability to exert control over lipid properties, including structure, charge, function, and self-assembly characteristics is a powerful tool that can be implemented to achieve a wide range of biomedical applications. Examples in this arena include the development of caged lipids for controlled activation of signaling properties, metabolic labeling strategies for tracking lipid biosynthesis, lipid activity probes for identifying cognate binding partners, approaches for in situ membrane assembly, and liposome triggered release strategies. In this Account, we describe recent advancements in the latter area entailing the development of stimuli-responsive liposomes through programmable changes to lipid self-assembly properties, which can be harnessed to drive the release of encapsulated contents toward applications including drug delivery. We will focus on an emerging paradigm involving liposomal platforms that are sensitized toward chemical agents ranging from metal cations to small organic molecules that exhibit dysregulation in disease states. This has been achieved by developing synthetic lipid switches that are designed to undergo programmed conformational changes upon the recognition of specific target analytes. These structural alterations are leveraged to perturb the packing of lipids within the membrane and thereby drive the release of encapsulated contents.We provide an overview of the inspiration, design, and characterization of liposomes that selectively respond to wide-ranging target analytes. This series of studies began with the development of calcium-responsive liposomes utilizing a lipid switch inspired by sensors including indo-1. Following this successful demonstration, we next showed that the selectivity of the lipid switch could be altered among different metal cations by producing a liposomal platform for which release is induced through zinc binding. Our next goal was to develop metabolite-responsive liposomes in which switching is driven by molecular recognition events involving phosphorylated small molecules. In this work, screening of lipid switches designed to interact with phosphorylated metabolites led to the identification of liposomal formulations that selectivity release contents in the presence of adenosine triphosphate (ATP). Finally, we were able to modulate the metabolite selectivity by rationally designing a modified lipid switch structure that is activated through complexation of inositol-(1,4,5)-trisphosphate (IP3). These projects show the progression of our approaches for liposome release triggered by molecular recognition principles, building from ion-responsive lipid switches to structures that are activated by small molecules. These "smart" liposomal platforms provide an important addition to the toolbox for controlled cargo release since they respond to ions or small molecules that are commonly overproduced by diseased cells.


Asunto(s)
Calcio , Liposomas , Adenosina Trifosfato , Calcio/química , Inositol , Lípidos/química , Liposomas/química , Zinc
5.
Chemistry ; 29(38): e202300417, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37085958

RESUMEN

We report the use of clickable monoacylglycerol (MAG) analogs as probes for the labeling of glycerolipids during lipid metabolism. Incorporation of azide tags onto the glycerol region was pursued to develop probes that would label glycerolipids, in which the click tag would not be removed through processes including acyl chain and headgroup remodeling. Analysis of clickable MAG probes containing acyl chains of different length resulted in widely variable cell imaging and cytotoxicity profiles. Based on these results, we focused on a probe bearing a short acyl chain (C4 -MAG-N3 ) that was found to infiltrate natural lipid biosynthetic pathways to produce click-tagged versions of both neutral and phospholipid products. Alternatively, strategic blocking of the glycerol sn-3 position in probe C4 -MEG-N3 served to deactivate phospholipid tagging and focus labeling on neutral lipids. This work shows that lipid metabolic labeling profiles can be tuned based on probe structures and provides valuable tools for evaluating alterations to lipid metabolism in cells.


Asunto(s)
Glicerol , Fosfolípidos , Metabolismo de los Lípidos
6.
Org Biomol Chem ; 21(5): 955-959, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36622111

RESUMEN

In this work, we report triggered content release from liposomes brought about by copper chelation to a synthetic lipid switch containing a picolinamide headgroup. Fluorescence-based dye-leakage assays showcase release of carboxyfluorescein dye cargo upon copper treatment and control of liposomal release based on copper abundance. Our results additionally show that this platform is selective for copper and is accompanied by significant changes to liposome properties upon treatment with this ion.


Asunto(s)
Cobre , Liposomas , Ácidos Picolínicos , Colorantes Fluorescentes , Lípidos
7.
Bioorg Med Chem ; 87: 117301, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37150117

RESUMEN

In this work, we report the design, synthesis, and application of a bis-pyrene phospholipid probe for detection of phospholipase A2 action through changes in pyrene monomer and excimer fluorescence intensities. Continuous fluorometric assays enabled detection of the activities of multiple PLA2 enzymes as well as the decrease in catalysis by PLA2 from honey bee venom caused by the inhibitor p-bromo phenacylbromide. Thin-layer chromatography and mass spectrometry analysis were also used to validate probe hydrolysis by PLA2. Mass spectrometry data also supported cleavage of the probe by phospholipase C and D enzymes, although changes in fluorescence were not observed in these cases. Nevertheless, the bis-pyrene phospholipid probe developed in this work is effective for detection of PLA2 enzyme activity through an assay that enables screening for inhibitor development.


Asunto(s)
Fosfolipasas , Fosfolípidos , Hidrólisis , Fosfolipasas/análisis , Fosfolipasas A2/química , Pirenos
8.
J Am Chem Soc ; 144(8): 3746-3756, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35171601

RESUMEN

Liposomal delivery vehicles can dramatically enhance drug transport. However, their clinical application requires enhanced control over content release at diseased sites. For this reason, triggered release strategies have been explored, although a limited toolbox of stimuli has thus far been developed. Here, we report a novel strategy for stimuli-responsive liposomes that release encapsulated contents in the presence of phosphorylated small molecules. Our formulation efforts culminated in selective cargo release driven by ATP, a universal energy source that is upregulated in diseases such as cancer. Specifically, we developed lipid switches 1a-b bearing two ZnDPA units designed to undergo substantial conformational changes upon ATP binding, thereby disrupting membrane packing and triggering the release of encapsulated contents. Dye leakage assays using the hydrophobic dye Nile red validated that ATP-driven release was selective over 11 similar phosphorylated metabolites, and release of the hydrophilic dye calcein was also achieved. Multiple alternative lipid switch structures were synthesized and studied (1c-d and 2), which provided insights into the structural features that render 1a-b selective toward ATP-driven release. Importantly, analysis of cellular delivery using fluorescence microscopy in conjunction with pharmacological ATP manipulation showed that liposome delivery was specific, as it increased upon intracellular ATP accumulation, and was inhibited by ATP downregulation. Our new approach shows strong prospects for enhancing the selectivity of release and payload delivery to diseased cells driven by metabolites such as ATP, providing an exciting new paradigm for controlled release.


Asunto(s)
Lípidos , Liposomas , Adenosina Trifosfato , Lípidos/química , Liposomas/química
9.
Chembiochem ; 23(21): e202200402, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36044591

RESUMEN

Liposomes are effective therapeutic nanocarriers due to their ability to encapsulate and enhance the pharmacokinetic properties of a wide range of drugs and diagnostic agents. A primary area in which improvement is needed for liposomal drug delivery is to maximize the delivery of these nanocarriers to cells. Cell membrane glycans provide exciting targets for liposomal delivery since they are often densely clustered on cell membranes and glycan overabundance and aberrant glycosylation patterns are a common feature of diseased cells. Herein, we report a liposome platform incorporating bis-boronic acid lipids (BBALs) to increase valency in order to achieve selective saccharide sensing and enhance cell surface recognition based on carbohydrate binding interactions. In order to vary properties, multiple BBALs (1 a-d) with variable linkers in between the binding units were designed and synthesized. Fluorescence-based microplate screening of carbohydrate binding showed that these compounds exhibit varying binding properties depending on their structures. Additionally, fluorescence microscopy experiments indicated enhancements in cellular association when BBALs were incorporated within liposomes. These results demonstrate that multivalent BBALs serve as an exciting glycan binding liposome system for targeted delivery.


Asunto(s)
Ácidos Borónicos , Liposomas , Liposomas/química , Ácidos Borónicos/química , Carbohidratos , Membrana Celular , Polisacáridos , Sistemas de Liberación de Medicamentos/métodos
10.
Chemistry ; 28(46): e202201057, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35639353

RESUMEN

We report boronate-caged guanidine-lipid 1 that activates liposomes for cellular delivery only upon uncaging of this compound by reactive oxygen species (ROS) to produce cationic lipid products. These liposomes are designed to mimic the exceptional cell delivery properties of cell-penetrating peptides (CPPs), while the inclusion of the boronate cage is designed to enhance selectivity such that cell entry will only be activated in the presence of ROS. Boronate uncaging by hydrogen peroxide was verified by mass spectrometry and zeta potential (ZP) measurements. A microplate-based fluorescence assay was developed to study the ROS-mediated vesicle interactions between 1-liposomes and anionic membranes, which were further elucidated via dynamic light scattering (DLS) analysis. Cellular delivery studies utilizing fluorescence microscopy demonstrated significant enhancements in cellular delivery only when 1-liposomes were incubated with hydrogen peroxide. Our results showcase that lipid 1 exhibits strong potential as an ROS-responsive liposomal platform for targeted drug delivery applications.


Asunto(s)
Peróxido de Hidrógeno , Liposomas , Guanidina , Lípidos/química , Liposomas/química , Especies Reactivas de Oxígeno/metabolismo
11.
Chemistry ; 28(45): e202201164, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35699671

RESUMEN

Liposomes are effective therapeutic delivery nanocarriers due to their ability to encapsulate and enhance the pharmacokinetic properties of a wide range of therapeutics. Two primary areas in which improvement is needed for liposomal drug delivery is to enhance the ability to infiltrate cells and to facilitate derivatization of the liposome surface. Herein, we report a liposome platform incorporating a cyclic disulfide lipid (CDL) for the dual purpose of enhancing cell entry and functionalizing the liposome membrane through thiol-disulfide exchange. In order to accomplish this, CDL-1 and CDL-2, composed of lipoic acid (LA) or asparagusic acid (AA) appended to a lipid scaffold, were designed and synthesized. A fluorescence-based microplate immobilization assay was implemented to show that these compounds enable convenient membrane decoration through reaction with thiol-functionalized small molecules. Additionally, fluorescence microscopy experiments indicated dramatic enhancements in cellular delivery when CDLs were incorporated within liposomes. These results demonstrate that multifunctional CDLs serve as an exciting liposome system for surface decoration and enhanced cellular delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Disulfuros , Sistemas de Liberación de Medicamentos/métodos , Lípidos , Liposomas/metabolismo , Compuestos de Sulfhidrilo
12.
Bioconjug Chem ; 32(12): 2485-2496, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34870414

RESUMEN

Liposomes are effective nanocarriers due to their ability to encapsulate and deliver a wide variety of therapeutics. However, therapeutic potential would be improved by enhanced control over the release of drug cargo. Zinc ions provide exciting new targets for stimuli-responsive lipid design due to their overly abundant concentrations associated with diseased cells. Herein, we report zinc-triggered release of liposomal contents exploiting synthetic lipid switches designed to undergo conformational changes in the presence of this ion. Initially, Nile red leakage assays were conducted that validated successful dose-dependent triggering of release using zinc-responsive lipids (ZRLs). In addition, dynamic light scattering and confocal microscopy experiments showed that zinc treatment led to morphological changes in lipid nanoparticles only when ZRLs were present in formulations. Next, zinc-binding experiments conducted in a solution (NMR, MS) or membrane (zeta potential) context confirmed ZRL-Zn complexation. Finally, polar cargo release from liposomes was achieved. The results from these wide-ranging experiments using four different compounds indicated that zinc-responsive properties varied based on ZRL structure, providing insights into the structural requirements for activity. This work has established zinc-responsive liposomal platforms toward the development of clinical triggered release formulations.


Asunto(s)
Liposomas , Nanopartículas
13.
Bioconjug Chem ; 31(9): 2220-2230, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32808755

RESUMEN

Liposomes have proven to be effective nanocarriers due to their ability to encapsulate and deliver a wide variety of therapeutic cargo. A key goal of liposome research is to enhance control over content release at diseased sites. Though a number of stimuli have been explored for triggering liposomal release, reactive oxygen species (ROS), which have received significantly less attention, provide excellent targets due to their key roles in biology and overabundance in diseased cells. Here, we report a ROS-responsive liposome platform through the inclusion of lipid 1 bearing a boronate ester headgroup and a quinone-methide (QM) generating self-immolative linker attached onto a dioleoylphosphatidylethanolamine (DOPE) lipid scaffold. Fluorescence-based dye release assays validated that this system enables release of both hydrophobic and hydrophilic contents upon hydrogen peroxide (H2O2) addition. Details of the release process were carefully studied, and data showed that oxidative removal of the boronate headgroup is sufficient to result in hydrophobic content release, while production of DOPE is needed for hydrophilic cargo leakage. These results showcase that lipid 1 can serve as a promising ROS-responsive liposomal delivery platform for controlled release.


Asunto(s)
Compuestos de Boro/química , Preparaciones de Acción Retardada/química , Liposomas/química , Fosfatidiletanolaminas/química , Especies Reactivas de Oxígeno/química , Colorantes Fluorescentes/administración & dosificación , Indolquinonas/química
14.
Chemistry ; 26(39): 8597-8607, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32301193

RESUMEN

Liposomes are effective nanocarriers due to their ability to deliver encapsulated drugs to diseased cells. Nevertheless, liposome delivery would be improved by enhancing the ability to control the release of contents at the target site. While various stimuli have been explored for triggering liposome release, enzymes provide excellent targets due to their common overexpression in diseased cells. We present a general approach to enzyme-responsive liposomes exploiting targets that are commonly aberrant in disease, including esterases, phosphatases, and ß-galactosidases. Responsive lipids correlating with each enzyme family were designed and synthesized bearing an enzyme substrate moiety attached via a self-immolating linker to a non-bilayer lipid scaffold, such that enzymatic hydrolysis triggers lipid decomposition to disrupt membrane integrity and release contents. Liposome dye leakage assays demonstrated that each enzyme-responsive liposome yielded significant content release upon enzymatic treatment compared to minimal release in controls. Results also showed that fine-tuning liposome composition was critical for controlling release. DLS analysis showed particle size increases in the cases of esterase- and ß-galactosidase-responsive lipids, supporting alterations to membrane properties. These results showcase an effective modular strategy that can be tailored to target different enzymes, providing a promising new avenue for advancing liposomal drug delivery.


Asunto(s)
Lípidos/química , Liposomas/química , beta-Galactosidasa/química , Sistemas de Liberación de Medicamentos/métodos , Liposomas/metabolismo , Tamaño de la Partícula
15.
Chemistry ; 25(1): 20-25, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30133869

RESUMEN

Advancements in the field of liposomal drug carriers have culminated in greatly improved delivery properties. An important aspect of this work entails development of designer liposomes for release of contents triggered by environmental changes. The majority of these systems are driven by chemical reactions in the presence of different stimuli. However, a promising new paradigm instead focuses on molecular recognition events as the impetus for content release. In certain cases, these platforms exploit synthetic lipid switches designed to undergo conformational changes upon binding to target ions or molecules that perturb membrane assembly, thereby triggering cargo release. Examples of this approach reported thus far showcase how rational design of lipid switches can result in dramatic changes in lipid assembly properties. These strategies show great promise for opening up new pathophysiological stimuli that can be harnessed for programmed content release in drug delivery applications.


Asunto(s)
Lípidos/química , Liposomas/química , Ácidos Borónicos/química , Calcio/química , Calcio/metabolismo , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Isomerismo , Liposomas/metabolismo , Fosfatidilserinas/química
16.
Chemistry ; 24(14): 3599-3607, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29323763

RESUMEN

Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties.


Asunto(s)
Calcio/metabolismo , Lípidos/química , Liposomas/química , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Lípidos/síntesis química , Estructura Molecular , Tamaño de la Partícula
17.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746395

RESUMEN

Live cell imaging of lipids and other metabolites is a long-standing challenge in cell biology. Bioorthogonal labeling tools allow for the conjugation of fluorophores to several phospholipid classes, but cannot discern their trafficking between adjacent organelles or asymmetry across individual membrane leaflets. Here we present fluorogen-activating coincidence sensing (FACES), a chemogenetic tool capable of quantitatively imaging subcellular lipid pools and reporting their transbilayer orientation in living cells. FACES combines bioorthogonal chemistry with genetically encoded fluorogen-activating proteins (FAPs) for reversible proximity sensing of conjugated molecules. We first validate this approach for quantifying discrete phosphatidylcholine pools in the ER and mitochondria that are trafficked by lipid transfer proteins. We then show that transmembrane domain-containing FAPs can be used to reveal the membrane asymmetry of multiple lipid classes that are generated in the trans-Golgi network. Lastly, we demonstrate that FACES is a generalizable tool for subcellular bioorthogonal imaging by measuring changes in mitochondrial N -acetylhexosamine levels. These results demonstrate the use of fluorogenic tags for spatially-defined molecular imaging.

18.
mBio ; 15(5): e0063324, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587428

RESUMEN

Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE: Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.


Asunto(s)
Antifúngicos , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa , Candida albicans , Inhibidores Enzimáticos , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Candida albicans/genética , Antifúngicos/farmacología , Antifúngicos/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Pruebas de Sensibilidad Microbiana , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Fosfatidilserinas/metabolismo , Furanos , Tiofenos
19.
Chem Commun (Camb) ; 59(22): 3285-3288, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36826384

RESUMEN

We report stimuli-responsive liposomes that selectively release encapsulated contents upon treatment with guanosine triphosphate (GTP) over a wide variety of phosphorylated metabolites, validated by fluorescence-based leakage assays. Significant changes in liposome self-assembly properties were also observed. Our results showcase the potential of this platform for triggered release applications.


Asunto(s)
Lípidos , Liposomas , Liposomas/química , Lípidos/química , Sitios de Unión
20.
Chem Commun (Camb) ; 58(28): 4520-4523, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35302139

RESUMEN

A stimuli-responsive liposomal platform that is selectively activated by inositol 1,4,5-trisphosphate (IP3) over eleven other phosphorylated metabolites is reported. Dye release assays validated dose-dependent release of both hydrophilic and hydrophobic cargo driven by IP3, showcasing the potential of this platform for triggered release and sensing applications.


Asunto(s)
Inositol 1,4,5-Trifosfato , Liposomas , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatos de Inositol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA