Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 26(11): 6125-6148, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34188164

RESUMEN

While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.


Asunto(s)
Trastorno Autístico , Neuropéptidos , Animales , Trastorno Autístico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Neuropéptidos/metabolismo , Prosencéfalo/metabolismo , Factores de Transcripción/metabolismo
2.
J Am Chem Soc ; 142(22): 9896-9901, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32412752

RESUMEN

Polyketide synthase (PKS) engineering is an attractive method to generate new molecules such as commodity, fine and specialty chemicals. A significant challenge is re-engineering a partially reductive PKS module to produce a saturated ß-carbon through a reductive loop (RL) exchange. In this work, we sought to establish that chemoinformatics, a field traditionally used in drug discovery, offers a viable strategy for RL exchanges. We first introduced a set of donor RLs of diverse genetic origin and chemical substrates  into the first extension module of the lipomycin PKS (LipPKS1). Product titers of these engineered unimodular PKSs correlated with chemical structure similarity between the substrate of the donor RLs and recipient LipPKS1, reaching a titer of 165 mg/L of short-chain fatty acids produced by the host Streptomyces albus J1074. Expanding this method to larger intermediates that require bimodular communication, we introduced RLs of divergent chemosimilarity into LipPKS2 and determined triketide lactone production. Collectively, we observed a statistically significant correlation between atom pair chemosimilarity and production, establishing a new chemoinformatic method that may aid in the engineering of PKSs to produce desired, unnatural products.


Asunto(s)
Biología Computacional , Sintasas Poliquetidas/química , Ingeniería de Proteínas , Estructura Molecular , Sintasas Poliquetidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA