RESUMEN
The bladder is a major component of the urinary tract, an organ system that expels metabolic waste and excess water, which necessitates proximity to the external environment and its pathogens. It also houses a commensal microbiome. Therefore, its tissue immunity must resist pathogen invasion while maintaining tolerance to commensals. Bacterial infection of the bladder is common, with half of women globally experiencing one or more episodes of cystitis in their lifetime. Despite this, our knowledge of bladder immunity, particularly in humans, is incomplete. Here we consider the current view of tissue immunity in the bladder, with a focus on defense against infection. The urothelium has robust immune functionality, and its defensive capabilities are supported by resident immune cells, including macrophages, dendritic cells, natural killer cells, and γδ T cells. We discuss each in turn and consider why adaptive immune responses are often ineffective in preventing recurrent infection, as well as areas of priority for future research.
Asunto(s)
Infecciones Bacterianas , Vejiga Urinaria , Animales , Femenino , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Macrófagos , Vejiga Urinaria/microbiologíaRESUMEN
Lower urinary tract infections are among the most common human bacterial infections, but extension to the kidneys is rare. This has been attributed to mechanical forces, such as urine flow, that prevent the ascent of bladder microbes. Here, we show that the regional hypersalinity, required for the kidney's urine-concentrating function, instructs epithelial cells to produce chemokines that localize monocyte-derived mononuclear phagocytes (MNPs) to the medulla. This hypersaline environment also increases the intrinsic bactericidal and neutrophil chemotactic activities of MNPs to generate a zone of defense. Because MNP positioning and function are dynamically regulated by the renal salt gradient, we find that patients with urinary concentrating defects are susceptible to kidney infection. Our work reveals a critical accessory role for the homeostatic function of a vital organ in optimizing tissue defense.
Asunto(s)
Riñón/inmunología , Fagocitos/inmunología , Animales , Línea Celular , Quimiocina CCL2/metabolismo , Quimiocinas/inmunología , Diabetes Insípida , Humanos , Riñón/citología , Médula Renal/inmunología , Receptores de Lipopolisacáridos/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Salinidad , Sodio/metabolismo , Factores de Transcripción/genética , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , Orina/química , Escherichia coli Uropatógena/fisiologíaRESUMEN
Organ shortage is a major challenge in kidney transplantation but the use of older donors, often with co-morbidities, is hampered by inconsistent outcomes. Methods of accurately stratifying marginal donor organs by clinical and histological assessment are lacking. To better understand organ variability, we profiled the transcriptomes of 271 kidneys from deceased donors at retrieval. Following correction for biopsy composition, we assessed molecular pathways that associated with delayed, and sub-optimal one-year graft function. Analysis of cortical biopsies identified an adaptive immune gene-rich module that significantly associated with increasing age and worse outcomes. Cellular deconvolution using human kidney reference single cell transcriptomes confirmed an increase in kidney-specific B and T cell signatures, as well as kidney macrophage, myofibroblast and fibroblast gene sets in this module. Surprisingly, innate immune pathway and neutrophil gene signature enrichment was associated with better outcomes. Thus, our work uncovers cellular molecular features of pathological organ ageing, identifiable at kidney retrieval, with translational potential.
Asunto(s)
Perfilación de la Expresión Génica , Trasplante de Riñón , Riñón , Transcriptoma , Humanos , Trasplante de Riñón/efectos adversos , Riñón/patología , Riñón/inmunología , Biopsia , Persona de Mediana Edad , Masculino , Adulto , Femenino , Perfilación de la Expresión Génica/métodos , Anciano , Factores de Edad , Donantes de Tejidos , Envejecimiento/patología , Envejecimiento/genética , Envejecimiento/inmunología , Patología Molecular/métodos , Inmunidad Innata , Inmunidad Adaptativa/genética , Adulto Joven , Análisis de la Célula Individual , Supervivencia de Injerto/inmunologíaRESUMEN
IgG antibodies cause inflammation and organ damage in autoimmune diseases such as systemic lupus erythematosus (SLE). We investigated the metabolic profile of macrophages isolated from inflamed tissues in immune complex (IC)-associated diseases, including SLE and rheumatoid arthritis, and following IgG Fcγ receptor cross-linking. We found that human and mouse macrophages undergo a switch to glycolysis in response to IgG IC stimulation, mirroring macrophage metabolic changes in inflamed tissue in vivo. This metabolic reprogramming was required to generate a number of proinflammatory mediators, including IL-1ß, and was dependent on mTOR and hypoxia-inducible factor (HIF)1α. Inhibition of glycolysis, or genetic depletion of HIF1α, attenuated IgG IC-induced activation of macrophages in vitro, including primary human kidney macrophages. In vivo, glycolysis inhibition led to a reduction in kidney macrophage IL-1ß and reduced neutrophil recruitment in a murine model of antibody-mediated nephritis. Together, our data reveal the molecular mechanisms underpinning FcγR-mediated metabolic reprogramming in macrophages and suggest a therapeutic strategy for autoantibody-induced inflammation, including lupus nephritis.
Asunto(s)
Reprogramación Celular/fisiología , Nefritis Lúpica/metabolismo , Animales , Células Cultivadas , Dinoprostona/genética , Dinoprostona/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica , Glucólisis/fisiología , Humanos , Inmunoglobulina G/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Riñón/citología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno , Receptores de IgG/genética , Receptores de IgG/metabolismoRESUMEN
BACKGROUND: Interleukin-2 (IL-2) has an essential role in the expansion and function of CD4+ regulatory T cells (Tregs). Tregs reduce tissue damage by limiting the immune response following infection and regulate autoreactive CD4+ effector T cells (Teffs) to prevent autoimmune diseases, such as type 1 diabetes (T1D). Genetic susceptibility to T1D causes alterations in the IL-2 pathway, a finding that supports Tregs as a cellular therapeutic target. Aldesleukin (Proleukin; recombinant human IL-2), which is administered at high doses to activate the immune system in cancer immunotherapy, is now being repositioned to treat inflammatory and autoimmune disorders at lower doses by targeting Tregs. METHODS AND FINDINGS: To define the aldesleukin dose response for Tregs and to find doses that increase Tregs physiologically for treatment of T1D, a statistical and systematic approach was taken by analysing the pharmacokinetics and pharmacodynamics of single doses of subcutaneous aldesleukin in the Adaptive Study of IL-2 Dose on Regulatory T Cells in Type 1 Diabetes (DILT1D), a single centre, non-randomised, open label, adaptive dose-finding trial with 40 adult participants with recently diagnosed T1D. The primary endpoint was the maximum percentage increase in Tregs (defined as CD3+CD4+CD25highCD127low) from the baseline frequency in each participant measured over the 7 d following treatment. There was an initial learning phase with five pairs of participants, each pair receiving one of five pre-assigned single doses from 0.04 × 106 to 1.5 × 106 IU/m2, in order to model the dose-response curve. Results from each participant were then incorporated into interim statistical modelling to target the two doses most likely to induce 10% and 20% increases in Treg frequencies. Primary analysis of the evaluable population (n = 39) found that the optimal doses of aldesleukin to induce 10% and 20% increases in Tregs were 0.101 × 106 IU/m2 (standard error [SE] = 0.078, 95% CI = -0.052, 0.254) and 0.497 × 106 IU/m2 (SE = 0.092, 95% CI = 0.316, 0.678), respectively. On analysis of secondary outcomes, using a highly sensitive IL-2 assay, the observed plasma concentrations of the drug at 90 min exceeded the hypothetical Treg-specific therapeutic window determined in vitro (0.015-0.24 IU/ml), even at the lowest doses (0.040 × 106 and 0.045 × 106 IU/m2) administered. A rapid decrease in Treg frequency in the circulation was observed at 90 min and at day 1, which was dose dependent (mean decrease 11.6%, SE = 2.3%, range 10.0%-48.2%, n = 37), rebounding at day 2 and increasing to frequencies above baseline over 7 d. Teffs, natural killer cells, and eosinophils also responded, with their frequencies rapidly and dose-dependently decreased in the blood, then returning to, or exceeding, pretreatment levels. Furthermore, there was a dose-dependent down modulation of one of the two signalling subunits of the IL-2 receptor, the ß chain (CD122) (mean decrease = 58.0%, SE = 2.8%, range 9.8%-85.5%, n = 33), on Tregs and a reduction in their sensitivity to aldesleukin at 90 min and day 1 and 2 post-treatment. Due to blood volume requirements as well as ethical and practical considerations, the study was limited to adults and to analysis of peripheral blood only. CONCLUSIONS: The DILT1D trial results, most notably the early altered trafficking and desensitisation of Tregs induced by a single ultra-low dose of aldesleukin that resolves within 2-3 d, inform the design of the next trial to determine a repeat dosing regimen aimed at establishing a steady-state Treg frequency increase of 20%-50%, with the eventual goal of preventing T1D. TRIAL REGISTRATION: ISRCTN Registry ISRCTN27852285; ClinicalTrials.gov NCT01827735.
Asunto(s)
Diabetes Mellitus Tipo 1/prevención & control , Interleucina-2/análogos & derivados , Linfocitos T Reguladores/efectos de los fármacos , Adolescente , Adulto , Biomarcadores , Quimiocinas/biosíntesis , Relación Dosis-Respuesta a Droga , Eosinófilos/efectos de los fármacos , Femenino , Humanos , Inmunofenotipificación , Mediadores de Inflamación/metabolismo , Interleucina-2/efectos adversos , Interleucina-2/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/farmacología , Adulto JovenAsunto(s)
Trasplante de Pulmón , Complicaciones Posoperatorias , Vasculitis , Adulto , Fibrosis Quística/cirugía , Humanos , MasculinoRESUMEN
Lower urinary tract infection (UTI) is common but only rarely complicated by pyelonephritis. However, the mechanisms preventing extension to the kidney are unclear. Here, we identified neutrophil extracellular traps (NETs) in healthy human urine that provide an antibacterial defense strategy within the urinary tract. In both in vivo murine models of UTI where uropathogenic E. coli are inoculated into the bladder and ex vivo human urine models, NETs interacted with uromodulin to form large webs that entrapped the bacteria. Peptidyl arginine deiminase 4 (PADI4) inhibition in mice blocked NETosis and resulted in progression of cystitis into pyelonephritis, suggesting that NETosis of urinary neutrophils acts to prevent bacterial ascent into the kidney. Analysis of UK Biobank data revealed that genetic variants in PADI4 that associated with increased risk of rheumatoid arthritis in multiple genome-wide association studies were consistently associated with reduced susceptibility to UTI. Last, we showed that urine dipstick testing for leukocyte esterase was negative in the presence of intact blood neutrophils but became positive when neutrophils were stimulated to NET, and this could be prevented by selective PADI4 inhibition, demonstrating that this test does not detect absolute neutrophil count, as has long been assumed, but specifically detects neutrophils that have undergone NETosis. These findings highlight the role of NETosis in preventing ascending infections in the urinary tract and improve our understanding of one of the most common clinical tests in medicine.
Asunto(s)
Trampas Extracelulares , Riñón , Neutrófilos , Arginina Deiminasa Proteína-Tipo 4 , Infecciones Urinarias , Trampas Extracelulares/metabolismo , Humanos , Animales , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Neutrófilos/metabolismo , Infecciones Urinarias/microbiología , Infecciones Urinarias/inmunología , Riñón/patología , Ratones , Uromodulina , Femenino , Tiras Reactivas , Escherichia coli Uropatógena/patogenicidad , Ratones Endogámicos C57BL , Desiminasas de la Arginina Proteica/metabolismo , Leucocitos/metabolismo , Hidrolasas de Éster CarboxílicoRESUMEN
Embryogenesis is a vulnerable time. Mutations in developmental cells can result in the wide dissemination of cells predisposed to disease within mature organs. We characterised the evolutionary history of four synchronous renal tumours from a 14-year-old girl using whole genome sequencing alongside single cell and bulk transcriptomic sequencing. Phylogenetic reconstruction timed the origin of all tumours to a multipotent embryonic cell committed to the right kidney, around 4 weeks post-conception. Biochemical and structural analysis of their shared MTOR mutation, absent from normal tissues, demonstrates enhanced protein flexibility, enabling a FAT domain hinge to dramatically increase activity of mTORC1 and mTORC2. Developmental mutations, not usually detected in traditional genetic screening, have vital clinical importance in guiding prognosis, targeted treatment, and family screening decisions for paediatric tumours.
Asunto(s)
Neoplasias Renales , Mutación , Serina-Treonina Quinasas TOR , Humanos , Femenino , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Adolescente , Neoplasias Renales/genética , Neoplasias Renales/patología , Desarrollo Embrionario/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , FilogeniaRESUMEN
Lupus nephritis is a serious complication of systemic lupus erythematosus, mediated by IgG immune complex (IC) deposition in kidneys, with limited treatment options. Kidney macrophages are critical tissue sentinels that express IgG-binding Fcγ receptors (FcγRs), with previous studies identifying prenatally seeded resident macrophages as major IC responders. Using single-cell transcriptomic and spatial analyses in murine and human lupus nephritis, we sought to understand macrophage heterogeneity and subset-specific contributions in disease. In lupus nephritis, the cell fate trajectories of tissue-resident (TrMac) and monocyte-derived (MoMac) kidney macrophages were perturbed, with disease-associated transcriptional states indicating distinct pathogenic roles for TrMac and MoMac subsets. Lupus nephritis-associated MoMac subsets showed marked induction of FcγR response genes, avidly internalized circulating ICs, and presented IC-opsonized antigen. In contrast, lupus nephritis-associated TrMac subsets demonstrated limited IC uptake, but expressed monocyte chemoattractants, and their depletion attenuated monocyte recruitment to the kidney. TrMacs also produced B cell tissue niche factors, suggesting a role in supporting autoantibody-producing lymphoid aggregates. Extensive similarities were observed with human kidney macrophages, revealing cross-species transcriptional disruption in lupus nephritis. Overall, our study suggests a division of labor in the kidney macrophage response in lupus nephritis, with treatment implications - TrMacs orchestrate leukocyte recruitment while MoMacs take up and present IC antigen.
Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Ratones , Humanos , Animales , Macrófagos , Monocitos/patología , Receptores de IgG/genética , Inmunoglobulina GRESUMEN
Bladder infection affects a hundred million people annually, but our understanding of bladder immunity is incomplete. We found type 17 immune response genes among the most up-regulated networks in mouse bladder following uropathogenic Escherichia coli (UPEC) challenge. Intravital imaging revealed submucosal Rorc+ cells responsive to UPEC challenge, and we found increased Il17 and IL22 transcripts in wild-type and Rag2 -/- mice, implicating group 3 innate lymphoid cells (ILC3s) as a source of these cytokines. NCR-positive and negative ILC3 subsets were identified in murine and human bladders, with local proliferation increasing IL17-producing ILC3s post infection. ILC3s made a more limited contribution to bladder IL22, with prominent early induction of IL22 evident in Th17 cells. Single-cell RNA sequencing revealed bladder NCR-negative ILC3s as the source of IL17 and identified putative ILC3-myeloid cell interactions, including via lymphotoxin-ß-LTBR. Altogether, our data provide important insights into the orchestration and execution of type 17 immunity in bladder defense.
RESUMEN
Tumor behavior is intricately dependent on the oncogenic properties of cancer cells and their multi-cellular interactions. To understand these dependencies within the wider microenvironment, we studied over 270,000 single-cell transcriptomes and 100 microdissected whole exomes from 12 patients with kidney tumors, prior to validation using spatial transcriptomics. Tissues were sampled from multiple regions of the tumor core, the tumor-normal interface, normal surrounding tissues, and peripheral blood. We find that the tissue-type location of CD8+ T cell clonotypes largely defines their exhaustion state with intra-tumoral spatial heterogeneity that is not well explained by somatic heterogeneity. De novo mutation calling from single-cell RNA-sequencing data allows us to broadly infer the clonality of stromal cells and lineage-trace myeloid cell development. We report six conserved meta-programs that distinguish tumor cell function, and find an epithelial-mesenchymal transition meta-program highly enriched at the tumor-normal interface that co-localizes with IL1B-expressing macrophages, offering a potential therapeutic target.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Transcriptoma , Perfilación de la Expresión Génica , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Transición Epitelial-Mesenquimal , Microambiente Tumoral/genética , Análisis de la Célula IndividualRESUMEN
The prostate gland produces prostatic fluid, high in zinc and citrate and essential for the maintenance of spermatozoa. Prostate cancer is a common condition with limited treatment efficacy in castration-resistant metastatic disease, including with immune checkpoint inhibitors. Using single-cell RNA-sequencing to perform an unbiased assessment of the cellular landscape of human prostate, we identify a subset of tumor-enriched androgen receptor-negative luminal epithelial cells with increased expression of cancer-associated genes. We also find a variety of innate and adaptive immune cells in normal prostate that were transcriptionally perturbed in prostate cancer. An exception is a prostate-specific, zinc transporter-expressing macrophage population (MAC-MT) that contributes to tissue zinc accumulation in homeostasis but shows enhanced inflammatory gene expression in tumors, including T cell-recruiting chemokines. Remarkably, enrichment of the MAC-MT signature in cancer biopsies is associated with improved disease-free survival, suggesting beneficial antitumor functions.
Asunto(s)
Células Epiteliales/metabolismo , Macrófagos/metabolismo , Próstata/inmunología , Próstata/metabolismo , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Transcriptoma , Anciano , Animales , Células Epiteliales/inmunología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , RNA-Seq , Receptores Androgénicos/metabolismo , Análisis de la Célula Individual/métodos , Zinc/metabolismoRESUMEN
Tissue-resident immune cells are important for organ homeostasis and defense. The epithelium may contribute to these functions directly or by cross-talk with immune cells. We used single-cell RNA sequencing to resolve the spatiotemporal immune topology of the human kidney. We reveal anatomically defined expression patterns of immune genes within the epithelial compartment, with antimicrobial peptide transcripts evident in pelvic epithelium in the mature, but not fetal, kidney. A network of tissue-resident myeloid and lymphoid immune cells was evident in both fetal and mature kidney, with postnatal acquisition of transcriptional programs that promote infection-defense capabilities. Epithelial-immune cross-talk orchestrated localization of antibacterial macrophages and neutrophils to the regions of the kidney most susceptible to infection. Overall, our study provides a global overview of how the immune landscape of the human kidney is zonated to counter the dominant immunological challenge.
Asunto(s)
Riñón/inmunología , Macrófagos/citología , Neutrófilos/citología , Adulto , Animales , Células Epiteliales/citología , Femenino , Feto , Regulación del Desarrollo de la Expresión Génica , Humanos , Riñón/anatomía & histología , Riñón/citología , Linfocitos/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/citología , RNA-Seq , Análisis de la Célula Individual , Infecciones Urinarias/inmunologíaRESUMEN
Messenger RNA encodes cellular function and phenotype. In the context of human cancer, it defines the identities of malignant cells and the diversity of tumor tissue. We studied 72,501 single-cell transcriptomes of human renal tumors and normal tissue from fetal, pediatric, and adult kidneys. We matched childhood Wilms tumor with specific fetal cell types, thus providing evidence for the hypothesis that Wilms tumor cells are aberrant fetal cells. In adult renal cell carcinoma, we identified a canonical cancer transcriptome that matched a little-known subtype of proximal convoluted tubular cell. Analyses of the tumor composition defined cancer-associated normal cells and delineated a complex vascular endothelial growth factor (VEGF) signaling circuit. Our findings reveal the precise cellular identities and compositions of human kidney tumors.