Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
NMR Biomed ; 35(1): e4610, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34636458

RESUMEN

Chemical exchange saturation transfer (CEST) methods measure the effect of magnetization exchange between solutes and water. While CEST methods are often implemented using a train of off-resonant shaped RF pulses, they are typically analyzed as if the irradiation were continuous. This approximation does not account for exchange of rotated magnetization, unique to pulsed irradiation and exploited by chemical exchange rotation transfer methods. In this work, we derive and test an analytic solution for the steady-state water signal under pulsed irradiation by extending a previous work to include the effects of pulse shape. The solution is largely accurate at all offsets, but this accuracy diminishes at higher exchange rates and when applying pulse shapes with large root-mean-squared to mean ratios (such as multi-lobe sinc pulses).


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Análisis Numérico Asistido por Computador , Estudios de Validación como Asunto
2.
NMR Biomed ; 34(2): e4437, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33283945

RESUMEN

In chemical exchange saturation transfer (CEST) imaging, the signal at 2.6 ppm from the water resonance in muscle has been assigned to phosphocreatine (PCr). However, this signal has limited specificity for PCr since the signal is also sensitive to exchange with protein and macromolecular protons when using some conventional quantification methods, and will vary with changes in the water longitudinal relaxation rate. Correcting for these effects while maintaining reasonable acquisition times is challenging. As an alternative approach to overcome these problems, here we evaluate chemical exchange rotation transfer (CERT) imaging of PCr in muscle at 9.4 T. Specifically, the CERT metric, AREXdouble,cpw at 2.6 ppm, was measured in solutions containing the main muscle metabolites, in tissue homogenates with controlled PCr content, and in vivo in rat leg muscles. PCr dominates CERT metrics around 2.6 ppm (although with nontrivial confounding baseline contributions), indicating that CERT is well-suited to PCr specific imaging, and has the added benefit of requiring a relatively small number of acquisitions.


Asunto(s)
Músculo Esquelético/química , Resonancia Magnética Nuclear Biomolecular/métodos , Fosfocreatina/análisis , Espectroscopía de Protones por Resonancia Magnética/métodos , Adenosina Trifosfato/análisis , Animales , Creatina/análisis , Glucógeno/análisis , Miembro Posterior , Lactatos/análisis , Músculo Esquelético/diagnóstico por imagen , Ratas , Rotación , Extractos de Tejidos/química
3.
Magn Reson Med ; 84(4): 1961-1976, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32243662

RESUMEN

PURPOSE: Phospholipids are key constituents of cell membranes and serve vital functions in the regulation of cellular processes; thus, a method for in vivo detection and characterization could be valuable for detecting changes in cell membranes that are consequences of either normal or pathological processes. Here, we describe a new method to map the distribution of partially restricted phospholipids in tissues. METHODS: The phospholipids were measured by signal changes caused by relayed nuclear Overhauser enhancement-mediated CEST between the phospholipid Cho headgroup methyl protons and water at around -1.6 ppm from the water resonance. The biophysical basis of this effect was examined by controlled manipulation of head group, chain length, temperature, degree of saturation, and presence of cholesterol. Additional experiments were performed on animal tumor models to evaluate potential applications of this novel signal while correcting for confounding contributions. RESULTS: Negative relayed nuclear Overhauser dips in Z-spectra were measured from reconstituted Cho phospholipids with cholesterol but not for other Cho-containing metabolites or proteins. Significant contrast was found between tumor and contralateral normal tissue signals in animals when comparing both the measured saturation transfer signal and a more specific imaging metric. CONCLUSION: We demonstrated specific relayed nuclear Overhauser effects in partially restricted phospholipid phantoms and similar effects in solid brain tumors after correcting for confounding signal contributions, suggesting possible translational applications of this novel molecular imaging method, which we name restricted phospholipid transfer.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Algoritmos , Animales , Encéfalo , Fosfolípidos
4.
Magn Reson Med ; 80(6): 2609-2617, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29802641

RESUMEN

PURPOSE: To test the ability of a novel pulse sequence applied in vivo at 3 Tesla to separate the contributions to the water signal from amide proton transfer (APT) and relayed nuclear Overhauser enhancement (rNOE) from background direct water saturation and semisolid magnetization transfer (MT). The lack of such signal source isolation has confounded conventional chemical exchange saturation transfer (CEST) imaging. METHODS: We quantified APT and rNOE signals using a chemical exchange rotation transfer (CERT) metric, MTRdouble . A range of duty cycles and average irradiation powers were applied, and results were compared with conventional CEST analyses using asymmetry (MTRasym ) and extrapolated magnetization transfer (EMR). RESULTS: Our results indicate that MTRdouble is more specific than MTRasym and, because it requires as few as 3 data points, is more rapid than methods requiring a complete Z-spectrum, such as EMR. In white matter, APT (1.5 ± 0.5%) and rNOE (2.1 ± 0.7%) were quantified by using MTRdouble with a 30% duty cycle and a 0.5-µT average power. In addition, our results suggest that MTRdouble is insensitive to B0 inhomogeneity, further magnifying its speed advantage over CEST metrics that require a separate B0 measurement. However, MTRdouble still has nontrivial sensitivity to B1 inhomogeneities. CONCLUSION: We demonstrated that MTRdouble is an alternative metric to evaluate APT and rNOE, which is fast, robust to B0 inhomogeneity, and easy to process.


Asunto(s)
Mapeo Encefálico , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto , Algoritmos , Simulación por Computador , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Protones , Rotación
5.
NMR Biomed ; 30(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28590070

RESUMEN

Chemical exchange saturation transfer (CEST) imaging of amine protons exchanging at intermediate rates and whose chemical shift is around 2 ppm may provide a means of mapping creatine. However, the quantification of this effect may be compromised by the influence of overlapping CEST signals from fast-exchanging amines and hydroxyls. We aimed to investigate the exchange rate filtering effect of a variation of CEST, named chemical exchange rotation transfer (CERT), as a means of isolating creatine contributions at around 2 ppm from other overlapping signals. Simulations were performed to study the filtering effects of CERT for the selection of transfer effects from protons of specific exchange rates. Control samples containing the main metabolites in brain, bovine serum albumin (BSA) and egg white albumen (EWA) at their physiological concentrations and pH were used to study the ability of CERT to isolate molecules with amines at 2 ppm that exchange at intermediate rates, and corresponding methods were used for in vivo rat brain imaging. Simulations showed that exchange rate filtering can be combined with conventional filtering based on chemical shift. Studies on samples showed that signal contributions from creatine can be separated from those of other metabolites using this combined filter, but contributions from protein amines may still be significant. This exchange filtering can also be used for in vivo imaging. CERT provides more specific quantification of amines at 2 ppm that exchange at intermediate rates compared with conventional CEST imaging.


Asunto(s)
Aminas/química , Imagen por Resonancia Magnética/métodos , Rotación , Animales , Encéfalo/diagnóstico por imagen , Simulación por Computador , Creatina/metabolismo , Neoplasias/diagnóstico , Ratas , Sensibilidad y Especificidad
6.
Bone ; 176: 116863, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37527697

RESUMEN

The current clinical assessment of fracture risk lacks information about the inherent quality of a person's bone tissue. Working toward an imaging-based approach to quantify both a bone tissue quality marker (tissue hydration as water bound to the matrix) and a bone microstructure marker (porosity as water in pores), we hypothesized that the concentrations of bound water (Cbw) are lower and concentrations of pore water (Cpw) are higher in patients with osteoporosis (OP) than in age- and sex-matched adults without the disease. Using recent developments in ultrashort echo time (UTE) magnetic resonance imaging (MRI), maps of Cbw and Cpw were acquired from the uninjured distal third radius (Study 1) of 20 patients who experienced a fragility fracture of the distal radius (Fx) and 20 healthy controls (Non-Fx) and from the tibia mid-diaphysis (Study 2) of 30 women with clinical OP (low T-scores) and 15 women without OP (normal T-scores). In Study 1, Cbw was significantly lower (p = 0.0018) and Cpw was higher (p = 0.0022) in the Fx than in the Non-Fx group. In forward stepwise, logistic regression models using Bayesian Information Criterion for selecting the best set of predictors (from imaging parameters, age, BMI, and DXA scanner type), the area-under-the-receiver operator characteristics-curve (AUC with 95 % confidence intervals) was 0.73 (0.56, 0.86) for hip aBMD (best predictors without MRI) and 0.86 (0.70, 0.95) for the combination of Cbw and Cpw (best predictors overall). In Study 2, Cbw was significantly lower (p = 0.0005) in women with OP (23.8 ± 4.3 1H mol/L) than in women without OP (29.9 ± 6.4 1H mol/L); Cpw was significantly higher by estimate of 2.9 1H mol/L (p = 0.0298) with clinical OP, but only when accounting for the type of UTE-MRI scan with 3D providing higher values than 2D (p < 0.0001). Lastly, Cbw, but not Cpw, was sensitive to bone forming osteoporosis medications over 12-months. UTE-MRI-derived measurements of bound and pore water concentrations are potential, aBMD-independent predictors of fracture risk.


Asunto(s)
Fracturas Óseas , Osteoporosis , Adulto , Humanos , Femenino , Agua , Teorema de Bayes , Imagen por Resonancia Magnética/métodos , Fracturas Óseas/diagnóstico por imagen , Osteoporosis/diagnóstico por imagen , Medición de Riesgo , Densidad Ósea
7.
Magn Reson Med ; 61(3): 560-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19097244

RESUMEN

Exercise increases the intracellular T(2) (T(2,i)) of contracting muscles. The mechanism(s) for the T(2,i) increase have not been fully described, and may include increased intracellular free water and acidification. These changes may alter chemical exchange processes between intracellular free water and proteins. In this study, the hypotheses were tested that (a) pH changes T(2,i) by affecting the rate of magnetization transfer (MT) between free intracellular water and intracellular proteins, and (b) the magnitude of the T(2,i) effect depends on acquisition mode (localized or nonlocalized) and echo spacing. Frog gastrocnemius muscles were excised and their intracellular pH was either kept at physiological pH (7.0) or modified to model exercising muscle (pH 6.5). The intracellular transverse relaxation rate (R(2,i) = 1/T(2,i)) always decreased in the acidic muscles, but the changes were greater when measured using more rapid refocusing rates. The MT rate from the macromolecular proton pool to the free water proton pool, its reverse rate, and the spin-lattice relaxation rate of water decreased in acidic muscles. It is concluded that intracellular acidification alters the R(2,i) of muscle water in a refocusing rate-dependent manner, and that the R(2,i) changes are correlated with changes in the MT rate between macromolecules and free intracellular water.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Músculo Esquelético/anatomía & histología , Músculo Esquelético/química , Animales , Agua Corporal , Concentración de Iones de Hidrógeno , Aumento de la Imagen/métodos , Técnicas In Vitro , Protones , Rana pipiens , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
J Phys Chem B ; 110(18): 9324-32, 2006 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-16671751

RESUMEN

Acidic proteins found in mineralized tissues act as nature's crystal engineers, where they play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), Ca10(PO4)6(OH)2, the main mineral component of bone and teeth. Key to understanding the structural basis of protein-crystal recognition and protein control of hard tissue growth is the nature of interactions between the protein side chains and the crystal surface. In an earlier work we have measured the proximity of the lysine (K6) side chain in an SN-15 peptide fragment of the salivary protein statherin adsorbed to the Phosphorus-rich surface of HAP using solid-state NMR recoupling experiments. 15N{31P} rotational echo double resonance (REDOR) NMR data on the side-chain nitrogen in K6 gave rise to three different models of protein-surface interaction to explain the experimental data acquired. In this work we extend the analysis of the REDOR data by examining the contribution of interactions between surface phosphorus atoms to the observed 15N REDOR decay. We performed 31P-31P recoupling experiments in HAP and (NH4)2HPO4 (DHP) to explore the nature of dipolar coupled 31P spin networks. These studies indicate that extensive networks of dipolar coupled 31P spins can be represented as stronger effective dipolar couplings, the existence of which must be included in the analysis of REDOR data. We carried out 15N{31P} REDOR in the case of DHP to determine how the size of the dephasing spin network influences the interpretation of the REDOR data. Although use of an extended 31P coupled spin network simulates the REDOR data well, a simplified 31P dephasing system composed of two spins with a larger dipolar coupling also simulates the REDOR data and only perturbs the heteronuclear couplings very slightly. The 31P-31P dipolar couplings between phosphorus nuclei in HAP can be replaced by an effective dipolar interaction of 600 Hz between two 31P spins. We incorporated this coupling and applied the above approach to reanalyze the 15N{31P} REDOR of the lysine side chain approaching the HAP surface and have refined the binding models proposed earlier. We obtain 15N-31P distances between 3.3 and 5 A from these models that are indicative of the possibility of a lysine-phosphate hydrogen bond.


Asunto(s)
Durapatita/química , Fragmentos de Péptidos/química , Proteínas y Péptidos Salivales/química , Simulación por Computador , Cristalografía , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Modelos Moleculares , Unión Proteica , Propiedades de Superficie
9.
J Magn Reson ; 178(1): 11-24, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16213170

RESUMEN

REDOR is a solid-state NMR technique frequently applied to biological structure problems. Through incorporation of phosphorothioate groups in the nucleic acid backbone and mono-fluorinated nucleotides, 31P{19F} REDOR has been used to study the binding of DNA to drugs and RNA to proteins through the detection of internuclear distances as large as 13-14 A. In this work, 31P{19F} REDOR is further refined for use in nucleic acids by the combined use of selective placement of phosphorothioate groups and the introduction of nucleotides containing trifluoromethyl (-CF3) groups. To ascertain the REDOR-detectable distance limit between an unique phosphorous spin and a trifluoromethyl group and to assess interference from intermolecular couplings, a series of model compounds and DNA dodecamers were synthesized each containing a unique phosphorous label and trifluoromethyl group or a single 19F nucleus. The dipolar coupling constants of the various 31P and 19F or -CF3 containing compounds were compared using experimental and theoretical dephasing curves involving several models for intermolecular interactions.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Cristalografía por Rayos X , Flúor/química , Estructura Molecular , Isótopos de Fósforo/química
10.
Nucleic Acids Res ; 31(17): 5084-9, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12930959

RESUMEN

We have performed solid-state 31P-19F REDOR nuclear magnetic resonance (NMR) experiments to monitor changes in minor groove width of the oligonucleotide d(CGCAAA2'FUTGGC)*d(GCCAAT(pS)TT GCG) (A3T2) upon binding of the drug distamycin A at different stoichiometries. In the hydrated solid-state sample, the minor groove width for the unbound DNA, measured as the 2'FU7-pS19 inter-label distance, was 9.4 +/- 0.7 A, comparable to that found for similar A:T-rich DNAs. Binding of a single drug molecule is observed to cause a 2.4 A decrease in groove width. Subsequent addition of a second drug molecule results in a larger conformational change, expanding this minor groove width to 13.6 A, consistent with the results of a previous solution NMR study of the 2:1 complex. These 31P-19F REDOR results demonstrate the ability of solid-state NMR to measure distances of 7-14 A in DNA-drug complexes and provide the first example of a direct spectroscopic measurement of minor groove width in nucleic acids.


Asunto(s)
ADN/química , Distamicinas/química , Conformación de Ácido Nucleico , Sitios de Unión , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Estructura Molecular , Oligonucleótidos/química
11.
J Gravit Physiol ; 14(1): P85-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18372712

RESUMEN

Muscle functional magnetic resonance imaging (MRI) refers to changes in the contrast properties of certain MR images that occur in exercising muscles. In part, these changes result indirectly from increased rates of cellular energy metabolism, which alter the image contrast properties by increasing the water content and by decreasing the intracellular pH. Also, increases in blood oxygen extraction cause a rapidly evolving, small, and negative contribution to signal. Together, these changes produce a complex time course of contrast changes during exercise. Analysis of this time course may provide insight into the physiology of exercising muscles. These contrast changes also provide a non-invasive method for determining the spatial pattern of muscle activation.


Asunto(s)
Imagen por Resonancia Magnética , Contracción Muscular , Músculo Esquelético/fisiología , Animales , Metabolismo Energético , Líquido Extracelular/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Líquido Intracelular/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/sangre , Factores de Tiempo
12.
Solid State Nucl Magn Reson ; 29(1-3): 242-50, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16257188

RESUMEN

Magic angle spinning NMR techniques can be used to determine the molecular structure of proteins adsorbed onto polymer and mineral surfaces, but the degree to which the orientation of proteins on surfaces can be uniquely determined by NMR is less well understood. In this manuscript, REDOR data obtained from model systems are analyzed with a view to determine the orientation of rare spins coupled to a lattice populated by strongly coupled spin 1/2 nuclei. When the surface is populated by closely spaced spins, the REDOR dephasing of a rare spin on the protein contact point to the surface is under certain circumstances complicated by contributions from homonuclear dipolar interactions between the spins of the lattice. To study multiple spin effects on the dephasing signal in rotational-echo-double-resonance experiments, we carried out a measurement on crystalline diammonium hydrogen phosphate as a model for a spin system with multiple dipolar interactions. Information about the (31)P-(31)P interactions is gathered from the reference measurement in the experiment. To fit the experimental (15)N and (31)P dephasing data well, it was necessary to account for as many as 6 and 8 spins in simulations, respectively. Using a single spin-pair interaction with an unknown distance yielded a good fit to the (31)P data with a distance of 2.7A that is nearly an Angström shorter than the shortest distance in the crystal structure. Homonuclear couplings are shown to have a significant effect on the expected dephasing.


Asunto(s)
Cristalografía/métodos , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Fosfatos/análisis , Fosfatos/química , Adsorción , Simulación por Computador , Ensayo de Materiales/métodos , Conformación Molecular , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA