Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 585(7824): 283-287, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32814897

RESUMEN

The risk of cancer and associated mortality increases substantially in humans from the age of 65 years onwards1-6. Nonetheless, our understanding of the complex relationship between age and cancer is still in its infancy2,3,7,8. For decades, this link has largely been attributed to increased exposure time to mutagens in older individuals. However, this view does not account for the established role of diet, exercise and small molecules that target the pace of metabolic ageing9-12. Here we show that metabolic alterations that occur with age can produce a systemic environment that favours the progression and aggressiveness of tumours. Specifically, we show that methylmalonic acid (MMA), a by-product of propionate metabolism, is upregulated in the serum of older people and functions as a mediator of tumour progression. We traced this to the ability of MMA to induce SOX4 expression and consequently to elicit transcriptional reprogramming that can endow cancer cells with aggressive properties. Thus, the accumulation of MMA represents a link between ageing and cancer progression, suggesting that MMA is a promising therapeutic target for advanced carcinomas.


Asunto(s)
Envejecimiento/metabolismo , Progresión de la Enfermedad , Ácido Metilmalónico/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/patología , Adulto , Anciano , Envejecimiento/sangre , Envejecimiento/genética , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ácido Metilmalónico/sangre , Ratones , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neoplasias/sangre , Neoplasias/genética , Factores de Transcripción SOXC/metabolismo , Transducción de Señal , Transcriptoma/genética , Factor de Crecimiento Transformador beta/metabolismo
2.
bioRxiv ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39131374

RESUMEN

Components of normal tissue architecture serve as barriers to tumor progression. Inflammatory and wound-healing programs are requisite features of solid tumorigenesis, wherein alterations to immune and non-immune stromal elements enable loss of homeostasis during tumor evolution. The precise mechanisms by which normal stromal cell states limit tissue plasticity and tumorigenesis, and which are lost during tumor progression, remain largely unknown. Here we show that healthy pancreatic mesenchyme expresses the paracrine signaling molecule KITL, also known as stem cell factor, and identify loss of stromal KITL during tumorigenesis as tumor-promoting. Genetic inhibition of mesenchymal KITL in the contexts of homeostasis, injury, and cancer together indicate a role for KITL signaling in maintenance of pancreas tissue architecture, such that loss of the stromal KITL pool increased tumor growth and reduced survival of tumor-bearing mice. Together, these findings implicate loss of mesenchymal KITL as a mechanism for establishing a tumor-permissive microenvironment.

3.
Aging Cell ; 22(2): e13760, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36567449

RESUMEN

Aging-associated microbial dysbiosis exacerbates various disorders and dysfunctions, and is a major contributor to morbidity and mortality in the elderly, but the underlying cause of this aging-related syndrome is confusing. SIRT6 knockout (SIRT6 KO) mice undergo premature aging and succumb to death by 4 weeks, and are therefore useful as a premature aging research model. Here, fecal microbiota transplantation from SIRT6 KO mice into wild-type (WT) mice phenocopies the gut dysbiosis and premature aging observed in SIRT6 KO mice. Conversely, an expanded lifespan was observed in SIRT6 KO mice when transplanted with microbiota from WT mice. Antibiotic cocktail treatment attenuated inflammation and cell senescence in KO mice, directly suggesting that gut dysbiosis contributes to the premature aging of SIRT6 KO mice. Increased Enterobacteriaceae translocation, driven by the overgrowth of Escherichia coli, is the likely mechanism for the premature aging effects of microbiome dysregulation, which could be reversed by a high-fat diet. Our results provide a mechanism for the causal link between gut dysbiosis and aging, and support a beneficial effect of a high-fat diet for correcting gut dysbiosis and alleviating premature aging. This study provides a rationale for the integration of microbiome-based high-fat diets into therapeutic interventions against aging-associated diseases.


Asunto(s)
Envejecimiento Prematuro , Microbioma Gastrointestinal , Sirtuinas , Animales , Ratones , Envejecimiento Prematuro/genética , Dieta Alta en Grasa , Disbiosis/etiología , Enterobacteriaceae , Ratones Endogámicos C57BL
4.
Redox Biol ; 61: 102627, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841051

RESUMEN

Metabolic reprogramming and metabolic plasticity allow cancer cells to fine-tune their metabolism and adapt to the ever-changing environments of the metastatic cascade, for which lipid metabolism and oxidative stress are of particular importance. NADPH is a central co-factor for both lipid and redox homeostasis, suggesting that cancer cells may require larger pools of NADPH to efficiently metastasize. NADPH is recycled through reduction of NADP+ by several enzymatic systems in cells; however, de novo NADP+ is synthesized only through one known enzymatic reaction, catalyzed by NAD+ kinase (NADK). Here, we show that NADK is upregulated in metastatic breast cancer cells enabling de novo production of NADP(H) and the expansion of the NADP(H) pools thereby increasing the ability of these cells to adapt to the challenges of the metastatic cascade and efficiently metastasize. Mechanistically, we found that metastatic signals lead to a histone H3.3 variant-mediated epigenetic regulation of the NADK promoter, resulting in increased NADK levels in cells with metastatic ability. Together, our work presents a previously uncharacterized role for NADK and de novo NADP(H) production as a contributor to breast cancer progression and suggests that NADK constitutes an important and much needed therapeutic target for metastatic breast cancers.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , NADP/metabolismo , Epigénesis Genética , Estrés Oxidativo , NAD/metabolismo , Melanoma Cutáneo Maligno
5.
Sci Signal ; 15(759): eabj4220, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346837

RESUMEN

The role of metabolites exchanged in the tumor microenvironment is largely thought of as fuels to drive the increased biosynthetic and bioenergetic demands of growing tumors. However, this view is shifting as metabolites are increasingly shown to function as signaling molecules that directly regulate oncogenic pathways. Combined with our growing understanding of the essential role of stromal cells, this shift has led to increased interest in how the collective and interconnected metabolome of the tumor microenvironment can drive malignant transformation, epithelial-to-mesenchymal transition, drug resistance, immune evasion, and metastasis. In this review, we discuss how metabolite exchange between tumors and various cell types in the tumor microenvironment-such as fibroblasts, adipocytes, and immune cells-can activate signaling pathways that drive cancer progression.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Transducción de Señal , Transición Epitelial-Mesenquimal , Neoplasias/metabolismo , Células del Estroma/metabolismo
6.
Nat Commun ; 13(1): 6239, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266345

RESUMEN

The systemic metabolic shifts that occur during aging and the local metabolic alterations of a tumor, its stroma and their communication cooperate to establish a unique tumor microenvironment (TME) fostering cancer progression. Here, we show that methylmalonic acid (MMA), an aging-increased oncometabolite also produced by aggressive cancer cells, activates fibroblasts in the TME, which reciprocally secrete IL-6 loaded extracellular vesicles (EVs) that drive cancer progression, drug resistance and metastasis. The cancer-associated fibroblast (CAF)-released EV cargo is modified as a result of reactive oxygen species (ROS) generation and activation of the canonical and noncanonical TGFß signaling pathways. EV-associated IL-6 functions as a stroma-tumor messenger, activating the JAK/STAT3 and TGFß signaling pathways in tumor cells and promoting pro-aggressive behaviors. Our findings define the role of MMA in CAF activation to drive metastatic reprogramming, unveiling potential therapeutic avenues to target MMA at the nexus of aging, the tumor microenvironment and metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Vesículas Extracelulares , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Metilmalónico/metabolismo , Interleucina-6/metabolismo , Microambiente Tumoral , Neoplasias/patología , Vesículas Extracelulares/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
7.
Nat Metab ; 4(4): 435-443, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35361954

RESUMEN

The alteration of metabolic pathways is a critical strategy for cancer cells to attain the traits necessary for metastasis in disease progression. Here, we find that dysregulation of propionate metabolism produces a pro-aggressive signature in breast and lung cancer cells, increasing their metastatic potential. This occurs through the downregulation of methylmalonyl coenzyme A epimerase (MCEE), mediated by an extracellular signal-regulated kinase 2-driven transcription factor Sp1/early growth response protein 1 transcriptional switch driven by metastatic signalling at its promoter level. The loss of MCEE results in reduced propionate-driven anaplerotic flux and intracellular and intratumoral accumulation of methylmalonic acid, a by-product of propionate metabolism that promotes cancer cell invasiveness. Altogether, we present a previously uncharacterized dysregulation of propionate metabolism as an important contributor to cancer and a valuable potential target in the therapeutic treatment of metastatic carcinomas.


Asunto(s)
Neoplasias , Propionatos , Humanos , Ácido Metilmalónico/metabolismo , Fenotipo , Propionatos/farmacología , Transducción de Señal
8.
Cell Rep ; 35(11): 109238, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133937

RESUMEN

Metabolic adaptations and the signaling events that control them promote the survival of pancreatic ductal adenocarcinoma (PDAC) at the fibrotic tumor site, overcoming stresses associated with nutrient and oxygen deprivation. Recently, rewiring of NADPH production has been shown to play a key role in this process. NADPH is recycled through reduction of NADP+ by several enzymatic systems in cells. However, de novo NADP+ is synthesized only through one known enzymatic reaction, catalyzed by NAD+ kinase (NADK). In this study, we show that oncogenic KRAS promotes protein kinase C (PKC)-mediated NADK phosphorylation, leading to its hyperactivation, thus sustaining both NADP+ and NADPH levels in PDAC cells. Together, our data show that increased NADK activity is an important adaptation driven by oncogenic signaling. Our findings indicate that NADK could serve as a much-needed therapeutic target for PDAC.


Asunto(s)
Adenocarcinoma/enzimología , Carcinogénesis/metabolismo , Carcinoma Ductal Pancreático/enzimología , Neoplasias Pancreáticas/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Adenocarcinoma/patología , Animales , Vías Biosintéticas , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , NADP/metabolismo , Neoplasias Pancreáticas/patología , Fosforilación , Fosfoserina/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas
9.
Cancer Cell ; 36(4): 402-417.e13, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31564638

RESUMEN

Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.


Asunto(s)
Carcinoma/patología , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Metástasis de la Neoplasia/genética , Animales , Carcinogénesis/genética , Carcinoma/genética , Línea Celular Tumoral , Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Progresión de la Enfermedad , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Femenino , Histonas/genética , Humanos , Masculino , Ratones , Regiones Promotoras Genéticas/genética , RNA-Seq , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cancer Cell ; 33(3): 347-354, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29533780

RESUMEN

Metastases arising from tumors have the proclivity to colonize specific organs, suggesting that they must rewire their biology to meet the demands of the organ colonized, thus altering their primary properties. Each metastatic site presents distinct metabolic challenges to a colonizing cancer cell, ranging from fuel and oxygen availability to oxidative stress. Here, we discuss the organ-specific metabolic adaptations that cancer cells must undergo, which provide the ability to overcome the unique barriers to colonization in foreign tissues and establish the metastatic tissue tropism phenotype.


Asunto(s)
Adaptación Fisiológica/fisiología , Encéfalo/metabolismo , Pulmón/metabolismo , Metástasis de la Neoplasia/patología , Microambiente Tumoral/fisiología , Animales , Encéfalo/patología , Humanos , Hígado/metabolismo , Hígado/patología , Pulmón/patología
12.
Mob DNA ; 5: 12, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24834134

RESUMEN

BACKGROUND: Trichomonas vaginalis is the most prevalent non-viral sexually transmitted parasite. Although the protist is presumed to reproduce asexually, 60% of its haploid genome contains transposable elements (TEs), known contributors to genome variability. The availability of a draft genome sequence and our collection of >200 global isolates of T. vaginalis facilitate the study and analysis of TE population dynamics and their contribution to genomic variability in this protist. RESULTS: We present here a pilot study of a subset of class II Tc1/mariner TEs that belong to the T. vaginalis Tvmar1 family. We report the genetic structure of 19 Tvmar1 loci, their ability to encode a full-length transposase protein, and their insertion frequencies in 94 global isolates from seven regions of the world. While most of the Tvmar1 elements studied exhibited low insertion frequencies, two of the 19 loci (locus 1 and locus 9) show high insertion frequencies of 1.00 and 0.96, respectively. The genetic structuring of the global populations identified by principal component analysis (PCA) of the Tvmar1 loci is in general agreement with published data based on genotyping, showing that Tvmar1 polymorphisms are a robust indicator of T. vaginalis genetic history. Analysis of expression of 22 genes flanking 13 Tvmar1 loci indicated significantly altered expression of six of the genes next to five Tvmar1 insertions, suggesting that the insertions have functional implications for T. vaginalis gene expression. CONCLUSIONS: Our study is the first in T. vaginalis to describe Tvmar1 population dynamics and its contribution to genetic variability of the parasite. We show that a majority of our studied Tvmar1 insertion loci exist at very low frequencies in the global population, and insertions are variable between geographical isolates. In addition, we observe that low frequency insertion is related to reduced or abolished expression of flanking genes. While low insertion frequencies might be expected, we identified two Tvmar1 insertion loci that are fixed across global populations. This observation indicates that Tvmar1 insertion may have differing impacts and fitness costs in the host genome and may play varying roles in the adaptive evolution of T. vaginalis.

13.
Cell Rep ; 9(1): 234-247, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25263550

RESUMEN

Transcription factors and chromatin-remodeling complexes are key determinants of embryonic stem cell (ESC) identity. Here, we demonstrate that BRD4, a member of the bromodomain and extraterminal domain (BET) family of epigenetic readers, regulates the self-renewal ability and pluripotency of ESCs. BRD4 inhibition resulted in induction of epithelial-to-mesenchymal transition (EMT) markers and commitment to the neuroectodermal lineage while reducing the ESC multidifferentiation capacity in teratoma assays. BRD4 maintains transcription of core stem cell genes such as OCT4 and PRDM14 by occupying their super-enhancers (SEs), large clusters of regulatory elements, and recruiting to them Mediator and CDK9, the catalytic subunit of the positive transcription elongation factor b (P-TEFb), to allow Pol-II-dependent productive elongation. Our study describes a mechanism of regulation of ESC identity that could be applied to improve the efficiency of ESC differentiation.


Asunto(s)
Células Madre Embrionarias/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Madre Pluripotentes/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA