Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 614(7946): 48-53, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725994

RESUMEN

Scattering of high energy particles from nucleons probes their structure, as was done in the experiments that established the non-zero size of the proton using electron beams1. The use of charged leptons as scattering probes enables measuring the distribution of electric charges, which is encoded in the vector form factors of the nucleon2. Scattering weakly interacting neutrinos gives the opportunity to measure both vector and axial vector form factors of the nucleon, providing an additional, complementary probe of their structure. The nucleon transition axial form factor, FA, can be measured from neutrino scattering from free nucleons, νµn → µ-p and [Formula: see text], as a function of the negative four-momentum transfer squared (Q2). Up to now, FA(Q2) has been extracted from the bound nucleons in neutrino-deuterium scattering3-9, which requires uncertain nuclear corrections10. Here we report the first high-statistics measurement, to our knowledge, of the [Formula: see text] cross-section from the hydrogen atom, using the plastic scintillator target of the MINERvA11 experiment, extracting FA from free proton targets and measuring the nucleon axial charge radius, rA, to be 0.73 ± 0.17 fm. The antineutrino-hydrogen scattering presented here can access the axial form factor without the need for nuclear theory corrections, and enables direct comparisons with the increasingly precise lattice quantum chromodynamics computations12-15. Finally, the tools developed for this analysis and the result presented are substantial advancements in our capabilities to understand the nucleon structure in the weak sector, and also help the current and future neutrino oscillation experiments16-20 to better constrain neutrino interaction models.

2.
Phys Chem Chem Phys ; 26(12): 9197-9206, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376884

RESUMEN

The electron induced dissociation of condensed benzene (C6H6) in thin films deposited on a Pt substrate is investigated by electron stimulated desorption (ESD) of anions and cations. The desorbed yields are recorded as a function of incident electron energy in the range of 10 to 950 eV for a fixed film thickness of 2 monolayers (ML) and for a fixed energy of 950 eV, as well as a function of film thickness from 0.5 to 8 monolayers (ML) for anions, and from 0.5 to 12ML for cations. Both energy and thickness dependencies are discussed in terms of the three main mechanisms yielding positively and/or negatively charged fragments: dissociative electron attachment (DEA), dipolar dissociation (DD) and dissociative ionization (DI) processes. At the probed energies, DD is the major mechanism, while DEA is predominantly induced by secondary electrons from the Pt substrate. Desorption of the parent positive ion is strongly suppressed. Similar qualitative behaviours are observed for the energy dependence of both anion and cation ESD yields, while some discrepancies exist in the thickness dependence, including a very significant systematic magnitude difference found between such ions formation. An estimation of the effective DD cross-section including the desorption probability is obtained. Feasible mechanisms behind the observed energy and thickness dependences for anion and cation yields are proposed. These results highlight the need for further investigations to better understand the underlying processes of electron induced dissociation in condensed matter.

3.
Phys Rev Lett ; 131(1): 011801, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478458

RESUMEN

Neutrino-induced charged-current single π^{+} production in the Δ(1232) resonance region is of considerable interest to accelerator-based neutrino oscillation experiments. In this Letter, high statistic differential cross sections are reported for the semiexclusive reaction ν_{µ}A→µ^{-}π^{+}+ nucleon(s) on scintillator, carbon, water, iron, and lead targets recorded by MINERvA using a wideband ν_{µ} beam with ⟨E_{ν}⟩≈6 GeV. Suppression of the cross section at low Q^{2} and enhancement of low T_{π} are observed in both light and heavy nuclear targets compared with phenomenological models used in current neutrino interaction generators. The cross sections per nucleon for iron and lead compared with CH across the kinematic variables probed are 0.8 and 0.5 respectively, a scaling which is also not predicted by current generators.

4.
Phys Rev Lett ; 131(5): 051801, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37595210

RESUMEN

MINERvA has measured the ν_{µ}-induced coherent π^{+} cross section simultaneously in hydrocarbon (CH), graphite (C), iron (Fe), and lead (Pb) targets using neutrinos from 2 to 20 GeV. The measurements exceed the predictions of the Rein-Sehgal and Berger-Sehgal PCAC based models at multi-GeV ν_{µ} energies and at produced π^{+} energies and angles, E_{π}>1 GeV and θ_{π}<10°. Measurements of the cross-section ratios of Fe and Pb relative to CH reveal the effective A scaling to increase from an approximate A^{1/3} scaling at few GeV to an A^{2/3} scaling for E_{ν}>10 GeV.

5.
Phys Rev Lett ; 130(16): 161801, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37154647

RESUMEN

This Letter presents the first simultaneous measurement of the quasielasticlike neutrino-nucleus cross sections on C, water, Fe, Pb, and scintillator (hydrocarbon or CH) as a function of longitudinal and transverse muon momentum. The ratio of cross sections per nucleon between Pb and CH is always above unity and has a characteristic shape as a function of transverse muon momentum that evolves slowly as a function of longitudinal muon momentum. The ratio is constant versus longitudinal momentum within uncertainties above a longitudinal momentum of 4.5 GeV/c. The cross section ratios to CH for C, water, and Fe remain roughly constant with increasing longitudinal momentum, and the ratios between water or C to CH do not have any significant deviation from unity. Both the overall cross section level and the shape for Pb and Fe as a function of transverse muon momentum are not reproduced by current neutrino event generators. These measurements provide a direct test of nuclear effects in quasielasticlike interactions, which are major contributors to long-baseline neutrino oscillation data samples.

6.
Phys Chem Chem Phys ; 25(30): 20510-20518, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37470102

RESUMEN

In this study, a complete and self-consistent cross section dataset for electron transport simulations through gaseous benzene in the energy range 0.1-1000 eV has been critically compiled. Its reliability has been evaluated through a joint experimental and computational procedure. To accomplish this, the compiled dataset has been used as input for event-by-event Monte Carlo simulations of the magnetically confined electron transport through gaseous benzene, and the simulated transmitted intensity has been compared with the experimental one for different incident energies and benzene gas pressures.

7.
Phys Rev Lett ; 129(2): 021803, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867435

RESUMEN

Neutrino charged-current quasielastic-like scattering, a reaction category extensively used in neutrino oscillation measurements, probes nuclear effects that govern neutrino-nucleus interactions. This Letter reports the first measurement of the triple-differential cross section for ν_{µ} quasielastic-like reactions using the hydrocarbon medium of the MINERvA detector exposed to a wideband beam spanning 2≤E_{ν}≤20 GeV. The measurement maps the correlations among transverse and longitudinal muon momenta and summed proton kinetic energies, and compares them to predictions from a state-of-art simulation. Discrepancies are observed that likely reflect shortfalls with modeling of pion and nucleon intranuclear scattering and/or spectator nucleon ejection from struck nuclei. The separate determination of leptonic and hadronic variables can inform experimental approaches to neutrino-energy estimation.

8.
Clin Oral Investig ; 26(2): 1427-1441, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34382106

RESUMEN

OBJECTIVE: The present study evaluated the biological effects and biomineralization potential of a new tantalum oxide (Ta2O5)-containing material designed for vital pulp therapy or perforation repair (NeoMTA 2), compared to NeoMTA Plus and Bio-C Repair. MATERIAL AND METHODS: Human dental pulp stem cells (hDPSCs) were exposed to different eluates from NeoMTA Plus, NeoMTA 2, and Bio-C Repair. Ion release from each material was determined using inductively coupled plasma-optical emission spectrometry (ICP-MS). The biological experiments performed were MTT assays, apoptosis/necrosis assays, adhesion assays, migration assays, morphology evaluation, and reactive oxygen species (ROS) production analysis. Biomineralization was assessed by Alizarin red S staining. Finally, osteo/odontogenic gene expression was determined by real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR). Data were analyzed using one-way ANOVA followed by Tukey's multiple comparison test. RESULTS: NeoMTA 2 displayed a significantly higher calcium release compared to the other materials (p < 0.05). When hDPSCs were cultured in presence of the different material eluates, all groups exhibited similar hDPSC viability and migration rates when compared to untreated cells. Substantial cell attachment and spreading were observed in all materials' surfaces, without significant differences. hDPSCs treated with NeoMTA 2 displayed an upregulation of ALP, Col1A1, RUNX2 (p < 0.001), ON, and DSPP genes (p < 0.05), and showed the highest mineralization potential compared to other groups (p < 0.001). Finally, the more concentrated eluates from these materials, specially NeoMTA Plus and NeoMTA 2, promoted higher ROS production in hDPSCs compared to Bio-C Repair and control cells (p < 0.001), although these ROS levels did not result in increased cell death. CONCLUSIONS: The new tantalum oxide (Ta2O5)-containing material shows an adequate cytocompatibility and the ability to promote biomineralization without using chemical osteogenic inducers, showing great potential as a new material for vital pulp therapy. CLINICAL RELEVANCE: NeoMTA 2 seems to be a promising material for vital pulp therapy. Further studies considering its biocompatibility and biomineralization potential are necessary.


Asunto(s)
Calcio , Cemento de Silicato , Biomineralización , Compuestos de Calcio/farmacología , Diferenciación Celular , Células Cultivadas , Pulpa Dental , Humanos , Ensayo de Materiales , Óxidos , Silicatos/farmacología , Células Madre , Tantalio
9.
Phys Chem Chem Phys ; 23(3): 2141-2153, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33437976

RESUMEN

We report a comprehensive study on the electronic excited states of tetrafluoro-1,4-benzoquinone, through high-resolution vacuum ultraviolet photoabsorption spectroscopy and time-dependent density functional theory calculations performed within the nuclear ensemble approach. Absolute cross section values were experimentally determined in the 3.8-10.8 eV energy range. The present experimental results represent the highest resolution data yet reported for this molecule and reveal previously unresolved spectral structures. The interpretation of the results was made in close comparison with the available data for para-benzoquinone [Jones et al., J. Chem. Phys., 2017, 146, 184303]. While the dominant absorption features for both molecules arise from analogous π* ← π transitions, some remarkable differences have been identified. The perfluoro effect manifests in different ways: shifts in band positions and cross sections, appearance of features associated with excitations to σCF* orbitals, and spectrum broadening by quenching of either vibrational or Rydberg progressions. The level of agreement between experiment and theory is very satisfactory, yet that required the inclusion of nuclear quantum effects in the calculations. We have also discussed the role of temperature on the absorption spectrum, as well as the involvement of core-excited resonances in promoting dissociative electron attachment reactions in the 3-5 eV range.

10.
Clin Oral Investig ; 25(8): 5009-5024, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33638052

RESUMEN

OBJECTIVE: The aim of the present study was to evaluate the in vitro biocompatibility of Theracal PT, Theracal LC, and MTA Angelus, considered as bioactive materials used for vital pulp treatment, on human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS: Human dental pulp stem cells (hDPSCs) were isolated from third molars, and material eluates were prepared (undiluted, 1:2, and 1:4 ratios). The hDPSC cytotoxicity, adhesion, morphology, viability, and cell migration were assessed. The mineralization nodule formation was determined by Alizarin red S staining (ARS). The odonto/osteogenic differentiation potential was assessed by osteo/odontogenic marker expression real-time qPCR. The chemical composition and ion release of the vital pulp materials were determined by energy dispersive X-ray (EDX) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. Statistical differences were assessed by ANOVA and Tukey's test (p < 0.05). RESULTS: The three vital pulp materials showed variable levels of calcium, tungsten, silicon, and zirconium release and in their chemical composition. Cytocompatibility assays revealed higher hDPSC viability and migration rates when treated with Theracal PT than with Theracal LC. The lowest cell adhesion and spreading were observed in all Theracal LC-treated groups, whereas the highest were observed when treated with MTA. Theracal PT and MTA promoted the upregulation of DSPP and RUNX2 gene expression (p < 0.05). After 21 days, both MTA Angelus and Theracal PT-treated cells exhibited a significantly higher mineralized nodule formation than the negative control (p < 0.05). CONCLUSIONS: This study demonstrates the favorable in vitro cytocompatibility and bioactive properties of the recently introduced Theracal PT and the well-established MTA Angelus on hDPSCs, as opposed to Theracal LC. More studies, including in vivo animal testing are suggested before these new formulations might be used in the clinical setting. CLINICAL RELEVANCE: Theracal PT is a new material that could be clinically suitable for vital pulp therapy. Further studies considering its biocompatibility and bioactivity are necessary.


Asunto(s)
Osteogénesis , Células Madre , Compuestos de Aluminio , Compuestos de Calcio/farmacología , Pulpa Dental , Combinación de Medicamentos , Humanos , Ensayo de Materiales , Óxidos , Silicatos/farmacología
11.
Clin Oral Investig ; 25(3): 1451-1462, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32651645

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the microstructural composition, ion release, cytocompatibility, and mineralization potential of Bio-C Sealer ION+ (BCI) and EndoSequence BC Sealer HiFlow (BCHiF), compared with AH Plus (AHP), in contact with human periodontal ligament cells (hPDLCs). MATERIALS AND METHODS: The sealers' ionic composition and release were assessed using energy-dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. For the biological assays, hPDLCs were isolated from third molars, and sealer extracts were prepared (undiluted, 1:2, and 1:4 ratios). An MTT assay, wound-healing assay, and cell morphology and adhesion analysis were performed. Activity-related gene expression was determined using RT-qPCR, and mineralization potential was assessed using Alizarin Red staining (ARS). Statistical analyses were performed using one-way ANOVA and Tukey's post hoc test (α < 0.05). RESULTS: The three sealers exhibited variable levels of silicon, calcium, zirconium, and tungsten release and in their composition. Both BCI and BCHiF groups showed positive results in cytocompatibility assays, unlike AHP. The BCHiF group showed an upregulation of CAP (p < 0.01), CEMP1, ALP, and RUNX2 (p < 0.001) compared with the negative control, while the BCI group showed an upregulation of CEMP1 (p < 0.01), CAP, and RUNX2 (p < 0.001). Both groups also exhibited a greater mineralization potential than the negative and positive controls (p < 0.001). CONCLUSIONS: The calcium silicate-based sealers considered in the present in vitro study exhibited a high calcium ion release, adequate cytocompatibility, upregulated osteo/cementogenic gene expression, and increased mineralized nodule formation in contact with hPDLCs. CLINICAL RELEVANCE: From a biological perspective, BCI and BCHiF could be clinically suitable for root canal filling.


Asunto(s)
Materiales de Obturación del Conducto Radicular , Compuestos de Calcio/farmacología , Resinas Epoxi , Humanos , Ensayo de Materiales , Proteínas , Materiales de Obturación del Conducto Radicular/farmacología , Silicatos/farmacología
12.
Phys Rev Lett ; 124(12): 121801, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32281855

RESUMEN

We measure neutrino charged-current quasielasticlike scattering on hydrocarbon at high statistics using the wideband Neutrinos at the Main Injector beam with neutrino energy peaked at 6 GeV. The double-differential cross section is reported in terms of muon longitudinal (p_{∥}) and transverse (p_{⊥}) momentum. Cross section contours versus lepton momentum components are approximately described by a conventional generator-based simulation, however, discrepancies are observed for transverse momenta above 0.5 GeV/c for longitudinal momentum ranges 3-5 and 9-20 GeV/c. The single differential cross section versus momentum transfer squared (dσ/dQ_{QE}^{2}) is measured over a four-decade range of Q^{2} that extends to 10 GeV^{2}. The cross section turnover and falloff in the Q^{2} range 0.3-10 GeV^{2} is not fully reproduced by generator predictions that rely on dipole form factors. Our measurement probes the axial-vector content of the hadronic current and complements the electromagnetic form factor data obtained using electron-nucleon elastic scattering. These results help oscillation experiments because they probe the importance of various correlations and final-state interaction effects within the nucleus, which have different effects on the visible energy in detectors.

13.
Anal Bioanal Chem ; 412(2): 489-498, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31760450

RESUMEN

Polar lipids, especially glycerophospholipids, constitute the main components of cell membranes and are precursors of signaling molecules in many cellular and physiological processes. For this reason, the development of methods with high capability for detection of polar lipids in biological samples is required. In this research, the objective was to develop a method for comprehensive qualitative/quantitative determination of polar lipids in plasma by a combination of acquisition methods with a triple quadrupole mass analyzer. The strategy was optimized in two steps: (a) a first step for detection of lipids by monitoring selective fragmentation patterns representative of each lipid family and (b) a second step for confirmation of lipid species by detection and identification of product ions associated with the conjugated fatty acids. The acquisition list was divided into two multiple reaction monitoring (MRM) methods to ensure the detection of all transitions with suited instrumental sensitivity according to chromatographic retention time and relative abundance in plasma. The combination of the two MRM methods allowed the detection of 398 polar lipids in plasma in 64 min. Precision, estimated as within-day variability, was below 6.8% for all determined lipid families, while between-day variability was below 24.0%. This strategy has been applied to a cohort formed by 384 individuals in order to obtain a qualitative and quantitative distribution of polar lipids in human plasma. The most concentrated lipid families in relative terms were lysophospholipids, plasmalogens, and phosphatydilcholines, with mean relative concentration of 58.0, 17.1, and 8.3%, respectively. Then, sphingomyelins and phosphatidylethanolamines reported a relative concentration of 2.0%, followed by phosphatidylserines, with 1.1%. Graphical abstract.


Asunto(s)
Cromatografía Liquida/métodos , Lípidos/sangre , Espectrometría de Masas en Tándem/métodos , Humanos
14.
Phys Chem Chem Phys ; 22(41): 23837-23846, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33073277

RESUMEN

We present novel experimental results of negative ion formation of halothane (C2HBrClF3) upon electron transfer from hyperthermal neutral potassium atoms (K°) in the collision energy range of 8-1000 eV. The experiments were performed in a crossed molecular beam setup allowing a comprehensive analysis of the time-of-flight (TOF) mass negative ions fragmentation pattern and a detailed knowledge of the collision dynamics in the energy range investigated. Such TOF mass spectra data show that the only negative ions formed are Br-, Cl- and F-, with a strong energy dependence in the low-energy collision region, with the bromine anion being the most abundant and sole fragment at the lowest collision energy probed. In addition, potassium cation (K+) energy loss spectra in the forward scattering direction were obtained in a hemispherical energy analyser at different K° impact energies. In order to support our experimental findings, ab initio quantum chemical calculations have been performed to help interpret the role of the electronic structure of halothane. Potential energy curves were obtained along the C-X (X = Br, Cl) coordinate to lend support to the dissociation processes yielding anion formation.

15.
Phys Chem Chem Phys ; 22(24): 13505-13515, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32530024

RESUMEN

Absolute total electron scattering cross sections (TCS) for nitrobenzene molecules with impact energies from 0.4 to 1000 eV have been measured by means of two different electron-transmission experimental arrangements. For the lower energies (0.4-250 eV) a magnetically confined electron beam system has been used, while for energies above 100 eV a linear beam transmission technique with high angular resolution allowed accurate measurements up to 1000 eV impact energy. In both cases random uncertainties were maintained below 5-8%. Systematic errors arising from the angular and energy resolution limits of each apparatus are analysed in detail and quantified with the help of our theoretical calculations. Differential elastic and integral elastic, excitation and ionisation as well as momentum transfer cross sections have been calculated, for the whole energy range considered here, by using an independent atom model in combination with the screening corrected additivity rule method including interference effects (IAM-SCARI). Due to the significant permanent dipole moment of nitrobenzene, additional differential and integral rotational excitation cross sections have been calculated in the framework of the Born approximation. If we ignore the rotational excitations, our calculated total cross section agrees well with our experimental results for impact energies above 15 eV. Additionally, they overlap at 10 eV with the low energy Schwinger Multichannel method with Pseudo Potentials (SMCPP) calculation available in the literature (L. S. Maioli and M. H. F. Bettega, J. Chem. Phys., 2017, 147, 164305). We find a broad feature in the experimental TCS at around 1.0 eV, which has been related to the formation of the NO2- anion and assigned to the π*(b1) resonance, according to previous mass spectra available in the literature. Other local maxima in the TCSs are found at 4.0 ± 0.2 and 5.0 ± 0.2 eV and are assigned to core excited resonances leading to the formation of the NO2- and O2- anions, respectively. Finally, for energies below 10 eV, differences found between the present measurements, the SMCPP calculation and our previous data for non-polar benzene have revealed the importance of accurately calculating the rotational excitation contribution to the TCS before comparing theoretical and experimental data. This comparison suggests that our dipole-Born calculation for nitrobenzene overestimates the magnitude of the rotational excitation cross sections below 10 eV.

16.
J Phys Chem A ; 124(16): 3220-3227, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32233369

RESUMEN

Negative ion formation in electron transfer experiments from fast neutral potassium (K) atom collisions with neutral tetrachloromethane (CCl4) molecules has been investigated in the laboratory frame range of 8-1000 eV. Comprehensive calculations on the electronic structure were performed for CCl4 in the presence of a potassium atom and used to help analyze the lowest unoccupied molecular orbitals participating in the collision process. Additionally, K+ energy loss produced in the forward direction has served to further our knowledge on the electronic state spectroscopy of CCl4. A vertical electron affinity of -0.79 ± 0.20 eV has been obtained and assigned to a purely repulsive transition from CCl4 ground state to the 2T2 state of the temporary negative ion yielding Cl- formation. Other features in the energy loss spectrum were observed for the first time and related to Cl2-, CCl2-, and CCl3- formation. Special attention is also given to the unresolved feature corresponding to a positive electron affinity of 0.24 ± 0.2 eV, assigned to a vibrationally hot transition from CCl4 ground state into the triply degenerate 2T2 excited state of the negative ion. The combined time-of-flight mass spectrometry together with K+ energy loss data represents the most comprehensive assignment of the tetrachloromethane anion yields and the role of CCl4 electronic states in collision induced dissociation to date.

17.
Int Endod J ; 53(9): 1216-1228, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32412113

RESUMEN

AIM: To evaluate in a laboratory setting the effects of Endosequence BC Sealer HiFlow (Brasseler USA, Savannah, GA, USA), a novel calcium silicate-based sealer developed for use in warm canal filling techniques, on human periodontal ligament stem cells (hPDLSCs). METHODOLOGY: Eluates of EndoSequence BC Sealer HiFlow (BCHiF) (Brasseler USA), EndoSequence BC Sealer (BCS) (Brasseler USA) and AH Plus (AHP) (Dentsply DeTrey GmbH, Konstanz, Germany) were placed in contact with hPDLSCs. The characterization of the chemical elements of the root canal sealers was assessed using scanning electron microscopy and energy-dispersive X-ray analysis (SEM-EDX). Inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine the ion release of the sealers. MTT assay and wound healing techniques were used to determine cell viability and migration, respectively. Cell morphology and cell attachment were assessed using a direct contact technique of hPDLSCs onto the surface of the sealers and analysed by SEM. The bioactivity potential was carried out with the Alizarin Red and qPCR testing methods. The statistical differences were evaluated using one-way anova and Tukey's test (P < 0.05). RESULTS: ICP-MS and EDX revealed significantly more zirconium in BCHiF than BCS (P < 0.05), whereas BCS had slightly higher levels of Ca2+ than BCHiF (P < 0.05). The cell viability assay revealed no relevant differences between BCS and BCHiF when compared with the control group (P > 0.05). Both BCS and BCHiF had similar rates of cell migration to the control group at 24 and 48 h. Cell morphology and adhesion capacity were also similar for BCS and BCHiF groups, whilst the AHP group was associated with reduced adhesion capacity. The Alizarin Red assay revealed a significant difference between the BCS and the control group (P < 0.001), as well as for the BCHiF group (P < 0.001). Finally, BCS and BCHiF promoted overexpression of osteo/cementogenic genes. CONCLUSIONS: In general, EndoSequence BC Sealer HiFlow possesses suitable biological properties to be safely used as a root canal filling material and promote increased expression of oste/cementogenic genes by hPDLSCs.


Asunto(s)
Compuestos de Calcio , Materiales de Obturación del Conducto Radicular , Resinas Epoxi , Alemania , Humanos , Ensayo de Materiales , Silicatos
18.
Clin Oral Investig ; 24(5): 1749-1759, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31399829

RESUMEN

OBJECTIVE: Compositional modifications may alter the biological and physicochemical characteristics of calcium silicate-based sealers (CSBS) and, ultimately, their bioactivity. The main objective of this study was to evaluate the biological properties of three CSBS: EndoSequence BC Sealer, Ceraseal, and Endoseal mineral trioxide aggregate. MATERIALS AND METHODS: Human periodontal ligament stem cells (hPDLSCs) were exposed to several eluates of CSBS. The ion release profile and pH were determined, and metabolic activity and cell migration were assessed using the MTT and wound healing assays. hPDLSCs were cultured in direct contact with the surface of each material, and cell morphology and attachment were analyzed by scanning electron microscopy (SEM). Bioactivity potential was assessed by RT-qPCR and mineralization assays. Statistical differences between biomaterials were assessed using one- or two-way ANOVA (α < 0.05). RESULTS: All materials showed an alkaline pH, although Endoseal exhibited a significantly higher pH compared with the other CSBS (p < 0.05). Ceraseal released significantly more Ca2+ (p < 0.05) than EndoSequence BC Sealer and Endoseal. Interestingly, Endoseal induced a significant reduction in cell viability and cell migration compared with the control (p < 0.001). Moreover, SEM showed abundant cells adhering to EndoSequence BC Sealer and Ceraseal surfaces, whereas very few round cells were detected on the surface of Endoseal. Finally, Ceraseal and EndoSequence induced ALP, CAP, and CEMP-1 expression and a significantly higher mineralization capacity than Endoseal (***p < 0.001). CONCLUSIONS: The eluates from EndoSequence BC Sealer and Ceraseal displayed higher cell viability, cell attachment, cell migration rates, and ion release rates than Endoseal. Ceraseal and EndoSequence BC Sealer exhibited significantly more gene expression and mineralization capacity than Endoseal. CLINICAL RELEVANCE: The results obtained in the present work suggest that EndoSequence BC Sealer and Ceraseal possess biological properties that make them suitable materials for root canal treatment.


Asunto(s)
Materiales Biocompatibles/farmacología , Compuestos de Calcio/farmacología , Materiales de Obturación del Conducto Radicular/farmacología , Silicatos/farmacología , Células Madre/efectos de los fármacos , Fosfatos de Calcio , Células Cultivadas , Combinación de Medicamentos , Humanos , Ensayo de Materiales , Óxidos , Ligamento Periodontal/citología
19.
J Antimicrob Chemother ; 74(5): 1357-1362, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753573

RESUMEN

BACKGROUND: HIV-2 is a neglected virus despite estimates of 1-2 million people being infected worldwide. The virus is naturally resistant to some antiretrovirals used to treat HIV-1 and therapeutic options are limited for patients with HIV-2. METHODS: In this retrospective observational study, we analysed all HIV-2-infected individuals treated with integrase strand transfer inhibitors (INSTIs) recorded in the Spanish HIV-2 cohort. Demographics, treatment modalities, laboratory values, quantitative HIV-2 RNA and CD4 counts as well as drug resistance were analysed. RESULTS: From a total of 354 HIV-2-infected patients recruited by the Spanish HIV-2 cohort as of December 2017, INSTIs had been given to 44, in 18 as first-line therapy and in 26 after failing other antiretroviral regimens. After a median follow-up of 13 months of INSTI-based therapy, undetectable viraemia for HIV-2 was achieved in 89% of treatment-naive and in 65.4% of treatment-experienced patients. In parallel, CD4 gains were 82 and 126 cells/mm3, respectively. Treatment failure occurred in 15 patients, 2 being treatment-naive and 13 treatment-experienced. INSTI resistance changes were recognized in 12 patients: N155H (5), Q148H/R (3), Y143C/G (3) and R263K (1). CONCLUSIONS: Combinations based on INSTIs are effective and safe treatment options for HIV-2-infected individuals. However, resistance mutations to INSTIs are selected frequently in failing patients, reducing the already limited treatment options.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/uso terapéutico , VIH-2/efectos de los fármacos , Adolescente , Adulto , Recuento de Linfocito CD4 , Farmacorresistencia Viral/genética , Femenino , Inhibidores de Integrasa VIH/farmacología , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mutación , ARN Viral/sangre , Estudios Retrospectivos , España , Insuficiencia del Tratamiento
20.
Mol Psychiatry ; 23(6): 1530-1540, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28696431

RESUMEN

Changes in synaptic excitability and reduced brain metabolism are among the earliest detectable alterations associated with the development of Alzheimer's disease (AD). Stimulation of synaptic activity has been shown to be protective in models of AD beta-amyloidosis. Remarkably, deep brain stimulation (DBS) provides beneficial effects in AD patients, and represents an important therapeutic approach against AD and other forms of dementia. While several studies have explored the effect of synaptic activation on beta-amyloid, little is known about Tau protein. In this study, we investigated the effect of synaptic stimulation on Tau pathology and synapses in in vivo and in vitro models of AD and frontotemporal dementia (FTD). We found that chronic DBS or chemically induced synaptic stimulation reduced accumulation of pathological forms of Tau and protected synapses, while chronic inhibition of synaptic activity worsened Tau pathology and caused detrimental effects on pre- and post-synaptic markers, suggesting that synapses are affected. Interestingly, degradation via the proteasomal system was not involved in the reduction of pathological Tau during stimulation. In contrast, chronic synaptic activation promoted clearance of Tau oligomers by autophagosomes and lysosomes. Chronic inhibition of synaptic activity resulted in opposite outcomes, with build-up of Tau oligomers in enlarged auto-lysosomes. Our data indicate that synaptic activity counteracts the negative effects of Tau in AD and FTD by acting on autophagy, providing a rationale for therapeutic use of DBS and synaptic stimulation in tauopathies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Sinapsis/metabolismo , Tauopatías/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Autofagia/fisiología , Encéfalo/metabolismo , Estimulación Encefálica Profunda/métodos , Modelos Animales de Enfermedad , Femenino , Demencia Frontotemporal/metabolismo , Hipocampo/patología , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Fármacos Neuroprotectores/metabolismo , Proteínas tau/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA