Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Radiat Oncol ; 11: 41, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980076

RESUMEN

BACKGROUND: Intraoperative electron radiotherapy (IOERT) is a highly selective radiotherapy technique which aims to treat restricted anatomic volumes during oncological surgery and is now the subject of intense re-evaluation. In vivo dosimetry has been recommended for IOERT and has been identified as a risk-reduction intervention in the context of an IOERT risk analysis. Despite reports of fruitful experiences, information about in vivo dosimetry in intraoperative radiotherapy is somewhat scarce. Therefore, the aim of this paper is to report our experience in developing a program of in vivo dosimetry for IOERT, from both multidisciplinary and practical approaches, in a consistent patient series. We also report several current weaknesses. METHODS: Reinforced TN-502RDM-H mobile metal oxide semiconductor field effect transistors (MOSFETs) and Gafchromic MD-55-2 films were used as a redundant in vivo treatment verification system with an Elekta Precise fixed linear accelerator for calibrations and treatments. In vivo dosimetry was performed in 45 patients in cases involving primary tumors or relapses. The most frequent primary tumors were breast (37 %) and colorectal (29 %), and local recurrences among relapses was 83 %. We made 50 attempts to measure with MOSFETs and 48 attempts to measure with films in the treatment zones. The surgical team placed both detectors with supervision from the radiation oncologist and following their instructions. RESULTS: The program was considered an overall success by the different professionals involved. The absorbed doses measured with MOSFETs and films were 93.8 ± 6.7 % and 97.9 ± 9.0 % (mean ± SD) respectively using a scale in which 90 % is the prescribed dose and 100 % is the maximum absorbed dose delivered by the beam. However, in 10 % of cases we experienced dosimetric problems due to detector misalignment, a situation which might be avoided with additional checks. The useful MOSFET lifetime length and the film sterilization procedure should also be controlled. CONCLUSIONS: It is feasible to establish an in vivo dosimetry program for a wide set of locations treated with IOERT using a multidisciplinary approach according to the skills of the professionals present and the detectors used; oncological surgeons' commitment is key to success in this context. Films are more unstable and show higher uncertainty than MOSFETs but are cheaper and are useful and convenient if real-time treatment monitoring is not necessary.


Asunto(s)
Metales/química , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Neoplasias/terapia , Radiometría/métodos , Radioterapia/métodos , Calibración , Electrones , Dosimetría por Película/economía , Dosimetría por Película/métodos , Humanos , Periodo Intraoperatorio , Recurrencia Local de Neoplasia , Óxidos/química , Aceleradores de Partículas , Cemento de Policarboxilato/química , Radioterapia/efectos adversos , Dosificación Radioterapéutica , Recurrencia , Reproducibilidad de los Resultados , Riesgo , Conducta de Reducción del Riesgo , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA