Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biol Chem ; 290(24): 14826-40, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25911100

RESUMEN

The RAD9A-HUS1-RAD1 (9-1-1) complex is a heterotrimeric clamp that promotes checkpoint signaling and repair at DNA damage sites. In this study, we elucidated HUS1 functional residues that drive clamp assembly, DNA interactions, and downstream effector functions. First, we mapped a HUS1-RAD9A interface residue that was critical for 9-1-1 assembly and DNA loading. Next, we identified multiple positively charged residues in the inner ring of HUS1 that were crucial for genotoxin-induced 9-1-1 chromatin localization and ATR signaling. Finally, we found two hydrophobic pockets on the HUS1 outer surface that were important for cell survival after DNA damage. Interestingly, these pockets were not required for 9-1-1 chromatin localization or ATR-mediated CHK1 activation but were necessary for interactions between HUS1 and its binding partner MYH, suggesting that they serve as interaction domains for the recruitment and coordination of downstream effectors at damage sites. Together, these results indicate that, once properly loaded onto damaged DNA, the 9-1-1 complex executes multiple, separable functions that promote genome maintenance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Genoma Humano , Transducción de Señal , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Secuencia de Bases , Proteínas de Ciclo Celular/química , Células Cultivadas , Cartilla de ADN , Humanos , Ratones , Conformación Proteica
2.
BMC Mol Biol ; 16: 12, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26063178

RESUMEN

BACKGROUND: SIRT6, a member of the NAD(+)-dependent histone/protein deacetylase family, regulates genomic stability, metabolism, and lifespan. MYH glycosylase and APE1 are two base excision repair (BER) enzymes involved in mutation avoidance from oxidative DNA damage. Rad9-Rad1-Hus1 (9-1-1) checkpoint clamp promotes cell cycle checkpoint signaling and DNA repair. BER is coordinated with the checkpoint machinery and requires chromatin remodeling for efficient repair. SIRT6 is involved in DNA double-strand break repair and has been implicated in BER. Here we investigate the direct physical and functional interactions between SIRT6 and BER enzymes. RESULTS: We show that SIRT6 interacts with and stimulates MYH glycosylase and APE1. In addition, SIRT6 interacts with the 9-1-1 checkpoint clamp. These interactions are enhanced following oxidative stress. The interdomain connector of MYH is important for interactions with SIRT6, APE1, and 9-1-1. Mutagenesis studies indicate that SIRT6, APE1, and Hus1 bind overlapping but different sequence motifs on MYH. However, there is no competition of APE1, Hus1, or SIRT6 binding to MYH. Rather, one MYH partner enhances the association of the other two partners to MYH. Moreover, APE1 and Hus1 act together to stabilize the MYH/SIRT6 complex. Within human cells, MYH and SIRT6 are efficiently recruited to confined oxidative DNA damage sites within transcriptionally active chromatin, but not within repressive chromatin. In addition, Myh foci induced by oxidative stress and Sirt6 depletion are frequently localized on mouse telomeres. CONCLUSIONS: Although SIRT6, APE1, and 9-1-1 bind to the interdomain connector of MYH, they do not compete for MYH association. Our findings indicate that SIRT6 forms a complex with MYH, APE1, and 9-1-1 to maintain genomic and telomeric integrity in mammalian cells.


Asunto(s)
Puntos de Control del Ciclo Celular , Reparación del ADN , ADN/metabolismo , Sirtuinas/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Exonucleasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Sirtuinas/genética , Telómero/metabolismo
3.
Biochem J ; 456(1): 89-98, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23952905

RESUMEN

TDG (thymine DNA glycosylase) is an essential multifunctional enzyme involved in DNA base excision repair, DNA demethylation and transcription regulation. TDG is the predominant enzyme that removes thymine from T/G mispair, which arises due to deamination of 5-methyl-cytosine at the CpG dinucleotide, thereby preventing C to T mutations. SIRT1 is a member of class III NAD+-dependent histone/protein deacetylases. In the present study, we demonstrate that SIRT1 interacts with residues 67-110 of hTDG (human TDG). In addition, SIRT1 enhances TDG glycosylase activity and deacetylates acetylated TDG. TDG acetylation weakens its interaction with SIRT1. Although acetylated TDG has reduced glycosylase activity towards T/G, 5-formylcytosine/G and 5-carboxylcytosine/G, it has a stronger activity towards a 5-fluorouracil/G substrate as compared with unmodified TDG. SIRT1 weakly stimulates acetylated hTDG activity towards T/G, 5-formylcytosine/G and 5-carboxylcytosine/G as compared with control hTDG. Sirt1-knockout mouse embryonic fibroblast cells have higher levels of TDG expression and acetylation. The physical and functional interactions between SIRT1 and TDG may mediate DNA repair, gene expression and FU (5-fluorouracil)-mediated cytotoxicity.


Asunto(s)
Sirtuina 1/metabolismo , Timina ADN Glicosilasa/metabolismo , Acetilación , Animales , Antineoplásicos/química , Reparación del ADN , Fibroblastos/metabolismo , Fluorouracilo/química , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Sirtuina 1/química , Sirtuina 1/genética , Especificidad por Sustrato , Timina ADN Glicosilasa/química
4.
PLoS One ; 17(8): e0272645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35939452

RESUMEN

The Rad9-Rad1-Hus1 checkpoint clamp activates the DNA damage response and promotes DNA repair. DNA loading on the central channel of the Rad9-Rad1-Hus1 complex is required to execute its biological functions. Because Rad9A has the highest DNA affinity among the three subunits, we determined the domains and functional residues of human Rad9A that are critical for DNA interaction. The N-terminal globular domain (residues 1-133) had 3.7-fold better DNA binding affinity than the C-terminal globular domain (residues 134-266) of Rad9A1-266. Rad9A1-266 binds DNA 16-, 60-, and 30-fold better than Rad9A1-133, Rad9A134-266, and Rad9A94-266, respectively, indicating that different regions cooperatively contribute to DNA binding. We show that basic residues including K11, K15, R22, K78, K220, and R223 are important for DNA binding. The reductions on DNA binding of Ala substituted mutants of these basic residues show synergistic effect and are dependent on their residential Rad9A deletion constructs. Interestingly, deletion of a loop (residues 160-163) of Rad9A94-266 weakens DNA binding activity by 4.1-fold as compared to wild-type (WT) Rad9A94-266. Cellular sensitivity to genotoxin of rad9A knockout cells is restored by expressing WT-Rad9Afull. However, rad9A knockout cells expressing Rad9A mutants defective in DNA binding are more sensitive to H2O2 as compared to cells expressing WT-Rad9Afull. Only the rad9A knockout cells expressing loop-deleted Rad9A mutant are more sensitive to hydroxyurea than cells expressing WT-Rad9A. In addition, Rad9A-DNA interaction is required for DNA damage signaling activation. Our results indicate that DNA association by Rad9A is critical for maintaining cell viability and checkpoint activation under stress.


Asunto(s)
Exonucleasas , Peróxido de Hidrógeno , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Daño del ADN , Reparación del ADN , Exonucleasas/genética , Humanos
5.
OBM Geriat ; 6(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812693

RESUMEN

Telomeres consist of special features and proteins to protect the ends of each chromosome from deterioration and fusion. The telomeric DNA repeats are highly susceptible to oxidative damage that can accelerate telomere shortening and affect telomere integrity. Several DNA repair factors including MYH/MUTYH DNA glycosylase, its interacting partners Rad9/Rad1/Hus1 checkpoint clamp, and SIRT6 aging regulator, are associated with the telomeres. MYH prevents C:G to A:T mutation by removing adenine mispaired with a frequent oxidative DNA lesion, 8-oxoguanine. Here, we show that hMYH knockout (KO) human HEK-293T cells are more sensitive to H2O2 treatment, have higher levels of DNA strand breaks and shorter telomeres than the control hMYH +/+ cells. SIRT6 foci increase at both the global genome and at telomeric regions in H2O2-treated hMYH +/+ cells. However, in untreated hMYH KO HEK-293T cells, SIRT6 foci only increase at the global genome, but not at the telomeric regions. In addition, the hMYH KO HEK-293T cells have increased extra-chromosomal and intra-chromosomal telomeres compared to the control cells, even in the absence of H2O2 treatment. After H2O2 treatment, the frequency of extra-chromosomal telomeres increased in control HEK-293T cells. Remarkably, in H2O2-treated hMYH KO cells, the frequencies of extra-chromosomal telomeres, intra-chromosomal telomeres, and telomere fusions are further increased. We further found that the sensitivity to H2O2 and shortened telomeres of hMYH KO cells, are restored by expressing wild-type hMYH, and partially rescued by expressing hMYHQ324H mutant (defective in Hus1 interaction only), but not by expressing hMYHV315A mutant (defective in both SIRT6 and Hus1 interactions). Thus, MYH interactions with SIRT6 and Hus1 are critical for maintaining cell viability and telomeric stability. Therefore, the failure to coordinate 8-oxoG repair is detrimental to telomere integrity.

6.
Aging (Albany NY) ; 12(18): 17761-17785, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32991318

RESUMEN

In the base excision repair pathway, MYH/MUTYH DNA glycosylase prevents mutations by removing adenine mispaired with 8-oxoG, a frequent oxidative lesion. MYH glycosylase activity is enhanced by Rad9-Rad1-Hus1 (9-1-1) checkpoint clamp and SIRT6 histone/protein deacetylase. Here, we show that MYH, SIRT6, and 9-1-1 are recruited to confined oxidatively damaged regions on telomeres in mammalian cells. Using different knockout cells, we show that SIRT6 responds to damaged telomeres very early, and then recruits MYH and Hus1 following oxidative stress. However, the recruitment of Hus1 to damaged telomeres is partially dependent on SIRT6. The catalytic activities of SIRT6 are not important for SIRT6 response but are essential for MYH recruitment to damaged telomeres. Compared to wild-type MYH, the recruitment of hMYHV315A mutant (defective in both SIRT6 and Hus1 interactions), but not hMYHQ324H mutant (defective in Hus1 interaction only), to damaged telomeres is severely reduced. The formation of MYH/SIRT6/9-1-1 complex is of biological significance as interrupting their interactions can increase cell's sensitivity to H2O2 and/or elevate cellular 8-oxoG levels after H2O2 treatment. Our results establish that SIRT6 acts as an early sensor of BER enzymes and both SIRT6 and 9-1-1 serve critical roles in DNA repair to maintain telomere integrity.

7.
BMC Biochem ; 10: 19, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19523222

RESUMEN

BACKGROUND: Escherichia coli MutY (EcMutY) reduces mutagenesis by removing adenines paired with guanines or 7,8-dihydro-8-oxo-guanines (8-oxoG). V45 and Q182 of EcMutY are considered to be the key determinants of adenine specificity. Both residues are spatially close to each other in the active site and are conserved in MutY family proteins but not in Methanobacterium thermoautotrophicum Mig.MthI T/G mismatch DNA glycosylase (A50 and L187 at the corresponding respective positions). RESULTS: Targeted mutagenesis study was performed to determine the substrate specificities of V45A, Q182L, and V45A/Q182L double mutant of EcMutY. All three mutants had significantly lower binding and glycosylase activities for A/G and A/8-oxoG mismatches than the wild-type enzyme. The double mutant exhibited an additive reduction in binding to both the A/G and A/GO in comparison to the single mutants. These mutants were also tested for binding and glycosylase activities with T/G- or T/8-oxoG-containing DNA. Both V45A and Q182L mutants had substantially increased affinities towards T/G, however, they did not exhibit any T/G or T/8-oxoG glycosylase activity. Surprisingly, the V45A/Q182L double mutant had similar binding affinities to T/G as the wild-type EcMutY. V45A, Q182L, and V45A/Q182L EcMutY mutants could not reduce the G:C to T:A mutation frequency of a mutY mutant. Expression of the V45A mutant protein caused a dominant negative phenotype with an increased G:C to A:T mutation frequency. CONCLUSION: The substrate specificities are altered in V45A, Q182L, and V45A/Q182L EcMutY mutants. V45A and Q182L mutants had reduced binding and glycosylase activities for A/G and A/8-oxoG mismatches and increased affinities towards T/G mismatch. However, in contrast to a previous report that Mig.MthI thymine DNA glycosylase can be converted to a MutY-like adenine glycosylase by replacing two residues (A50V and L187Q), both V45A and Q182L EcMutY mutants did not exhibit any T/G or T/8-oxoG glycosylase activity. The dominant negative phenotype of V45A EcMutY mutant protein is probably caused by its increased binding affinity to T/G mismatch and thus inhibiting other repair pathways.


Asunto(s)
ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Escherichia coli/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , ADN Glicosilasas/genética , Reparación de la Incompatibilidad de ADN , Escherichia coli/química , Escherichia coli/genética , Datos de Secuencia Molecular , Mutación Missense , Unión Proteica , Alineación de Secuencia , Especificidad por Sustrato
8.
Br J Nutr ; 102(10): 1462-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19811694

RESUMEN

Polycyclic aromatic hydrocarbons (PAH) are procarcinogens that can be commonly found in our food and environment. Upon biotransformation in our body system, they can cause DNA damage through the generation of genotoxic species and oxidative stress. Phase I and II enzymes are pivotal in the process of proximate carcinogen formation and elimination. Some dietary phytochemicals are strong inhibitors to the phase I enzymes. In the present study, we investigated the effect of the red wine compound resveratrol on DNA damage induced by PAH in a non-tumorigenic breast cell line MCF-10A. Resveratrol ranging from 1 to 5 microm could significantly suppress the expressions of cytochrome P450 (CYP) 1A1, CYP1B1 and UDP-glucuronosyltransferase (UGT) 1A1 induced by 7,12-dimethylbenz[a]anthracene (DMBA). The comet assay indicated that DMBA introduced DNA damage to these cells, and co-treatment of resveratrol at 5 or 10 microm could alleviate the damage. Further investigation illustrated that resveratrol reduced the binding of DMBA metabolites to DNA with no effect on DMBA-induced oxidative DNA damage. Since the phase II enzyme UGT1A1 was suppressed, the elimination of DMBA metabolites would not have contributed to the reduction in the DMBA metabolite-DNA binding. In summary, resveratrol might protect breast cells against PAH-induced DNA damage. The underlying mechanism was mediated by phase I enzyme suppression rather than phase II enzyme induction or oxidative DNA repair.


Asunto(s)
Benzo(a)Antracenos/toxicidad , Daño del ADN/efectos de los fármacos , Estilbenos/farmacología , Vino/análisis , Anticarcinógenos/farmacología , Línea Celular Tumoral , Sistema Enzimático del Citocromo P-450/metabolismo , Reparación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Oxidación-Reducción , Resveratrol
9.
Br J Nutr ; 101(2): 257-62, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18570695

RESUMEN

Polycyclic aromatic hydrocarbons (PAH) are established cancer initiators that can be found in our food and environment. Some dietary phytochemicals are strong inhibitors of PAH-induced mutagenesis. The soya isoflavone genistein has been shown previously in our laboratory to be an inhibitor of PAH metabolite binding to DNA. In the present study, we investigated the effect of genistein on oxidative DNA damage induced by PAH in the non-tumorigenic breast cell line MCF10A. 7,12-Dimethyl-benz[a]anthracene (DMBA) can induce expressions of CYP1A1 and CYP1B1 which are known to be responsive to PAH. These enzymes, in turn, will metabolise the PAH into their ultimate carcinogenic forms. Genistein can significantly suppress the expressions within 5 microm. The comet assay indicated that DMBA introduced DNA damage to these cells, and co-treatment with genistein at 5 or 10 microm could alleviate the damage. In addition to the chelation of DMBA metabolites to DNA, flow cytometry results revealed that oxidation was also a factor of DNA damage. The oxidative DNA damage could be removed by co-treating with 10 microm-genistein. Because no increased oxidative DNA repair was observed, suppression on the cytochrome enzymes appeared to be the underlying mechanism.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Anticarcinógenos/farmacología , Mama/metabolismo , Daño del ADN , Genisteína/farmacología , Hidrocarburos Policíclicos Aromáticos/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Hidrocarburo de Aril Hidroxilasas/genética , Mama/citología , Mama/efectos de los fármacos , Línea Celular , Ensayo Cometa , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1 , Femenino , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Humanos , Estrés Oxidativo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
10.
Nucleic Acids Res ; 35(8): 2463-72, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17395641

RESUMEN

The checkpoint protein Rad9/Rad1/Hus1 heterotrimer (the 9-1-1 complex) is structurally similar to the proliferating cell nuclear antigen sliding clamp and has been proposed to sense DNA damage that leads to cell cycle arrest or apoptosis. Human (h) NEIL1 DNA glycosylase, an ortholog of bacterial Nei/Fpg, is involved in repairing oxidatively damaged DNA bases. In this study, we show that hNEIL1 interacts with hRad9, hRad1 and hHus1 as individual proteins and as a complex. Residues 290-350 of hNEIL1 are important for the 9-1-1 association. A significant fraction of the hNEIL1 nuclear foci co-localize with hRad9 foci in hydrogen peroxide treated cells. Human NEIL1 DNA glycosylase activity is significantly stimulated by hHus1, hRad1, hRad9 separately and the 9-1-1 complex. Thus, the 9-1-1 complex at the lesion sites serves as both a damage sensor to activate checkpoint control and a component of base excision repair.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Glicosilasas/metabolismo , Exonucleasas/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/análisis , Línea Celular , ADN Glicosilasas/análisis , ADN Glicosilasas/química , Activación Enzimática , Exonucleasas/análisis , Humanos
11.
Nucleic Acids Res ; 35(18): 6207-18, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17855402

RESUMEN

Human (h) DNA repair enzyme thymine DNA glycosylase (hTDG) is a key DNA glycosylase in the base excision repair (BER) pathway that repairs deaminated cytosines and 5-methyl-cytosines. The cell cycle checkpoint protein Rad9-Rad1-Hus1 (the 9-1-1 complex) is the surveillance machinery involved in the preservation of genome stability. In this study, we show that hTDG interacts with hRad9, hRad1 and hHus1 as individual proteins and as a complex. The hHus1 interacting domain is mapped to residues 67-110 of hTDG, and Val74 of hTDG plays an important role in the TDG-Hus1 interaction. In contrast to the core domain of hTDG (residues 110-308), hTDG(67-308) removes U and T from U/G and T/G mispairs, respectively, with similar rates as native hTDG. Human TDG activity is significantly stimulated by hHus1, hRad1, hRad9 separately, and by the 9-1-1 complex. Interestingly, the interaction between hRad9 and hTDG, as detected by co-immunoprecipitation (Co-IP), is enhanced following N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. A significant fraction of the hTDG nuclear foci co-localize with hRad9 foci in cells treated with methylating agents. Thus, the 9-1-1 complex at the lesion sites serves as both a damage sensor to activate checkpoint control and a component of the BER.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Exonucleasas/metabolismo , Timina ADN Glicosilasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Daño del ADN , Activación Enzimática , Células HeLa , Humanos , Datos de Secuencia Molecular , Timina ADN Glicosilasa/análisis , Timina ADN Glicosilasa/química
12.
Oncotarget ; 9(54): 30450-30464, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30100999

RESUMEN

Melanoma patients respond poorly to chemotherapies because they acquire drug resistance. Therapies that can overcome the resistance to inhibitors of the mutated BRAF protein kinase in melanoma are urgently needed. Chk1 protein kinase is a central component of the DNA damage response and plays a crucial role in controlling cell cycle progression. Analyses indicate that low mRNA expression of Chk1 is significantly associated with good overall survival of melanoma patients. To evaluate the effectiveness of Chk1 inhibitors in melanoma therapy, we have generated BRAF inhibitor (PLX4032 or vemurafenib) resistant melanoma cell lines (A375-PLX-R and WM9-PLX-R) from A375 and WM9, respectively. We observe that AKT (protein kinase B) is constitutively activated in A375-PLX-R, but not in WM9-PLX-R cells, suggesting that these cells develop resistance to PLX4032 through different mechanisms. We show that a potent and specific inhibitor of Chk1 (PF477736) is effective in reducing cell viability and colony formation of PLX4032-resistant cells. Even more impressively, PF477736 triggers PLX4032-resistant melanoma cells to regain sensitivity to the PLX4032. Mouse xenograft studies show that treating A375-PLX-R derived tumors with combined PLX4032 and PF477736 significantly reduce tumor growth. Combined treatments with PLX4032 and PF477736 reduce the levels of total Chk1 protein and alter Chk1 phosphorylation at several sites in both PLX4032 sensitive and resistant melanoma cells. Combinatorial treatments with PLX4032 and PF477736 to melanoma cells substantially induce DNA damage and cell death. Our results suggest that Chk1 inhibitors may provide new therapy options for melanoma patients.

13.
Cancer Lett ; 250(1): 74-81, 2007 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-17081686

RESUMEN

The MutY homolog (MYH) can excise adenines misincorporated opposite to guanines or 7,8-dihydro-8-oxo-guanines (8-oxoG) during DNA replication; thereby preventing G:C to T:A transversions. Germline mutations in the human MYH gene are associated with recessive inheritance of colorectal adenomatous polyposis (MAP). Here, we characterize one newly identified MAP-associated MYH missense mutation (R231L) that lies adjacent to the putative hMSH6 binding domain. The R231L mutant protein has severe defects in A/GO binding and in adenine glycosylase activities. The mutant fails to complement mutY-deficiency in Escherichia coli, but does not affect binding to hMSH6. These data support the role of the hMYH pathway in carcinogenesis.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , ADN Glicosilasas/genética , Mutación Missense , ADN Glicosilasas/metabolismo , Reparación del ADN , Humanos , Masculino , Persona de Mediana Edad , Unión Proteica
14.
Biochem J ; 393(Pt 1): 381-7, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16201966

RESUMEN

Both GO (7,8-dihydro-8-oxoguanine) and hoU (5-hydroxyuracil) are highly mutagenic because DNA polymerase frequently misincorporates adenine opposite these damaged bases. In Escherichia coli, MutY DNA glycosylase can remove misincorporated adenine opposite G or GO on the template strand during DNA replication. MutY remains bound to the product that contains an AP (apurinic/apyrimidinic) site. Endo VIII (endonuclease VIII) can remove oxidized pyrimidine and weakly remove GO by its DNA glycosylase and beta/delta-elimination activities. In the present paper, we demonstrate that Endo VIII can promote MutY dissociation from AP/G, but not from AP/GO, and can promote beta/delta-elimination on the products of MutY. MutY interacts physically with Endo VIII through its C-terminal domain. MutY has a moderate affinity for DNA containing a hoU/A mismatch, which is a substrate of Endo VIII. MutY competes with Endo VIII and inhibits Endo VIII activity on DNA that contains a hoU/A mismatch. Moreover, MutY has a weak adenine glycosylase activity on hoU/A mismatches. These results suggest that MutY may have some role in reducing the mutagenic effects of hoU.


Asunto(s)
ADN Glicosilasas/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Guanina/análogos & derivados , Guanina/metabolismo , Unión Proteica , Conformación Proteica , Uracilo/análogos & derivados , Uracilo/metabolismo
15.
Biochem J ; 400(1): 53-62, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16879101

RESUMEN

The MYH (MutY glycosylase homologue) increases replication fidelity by removing adenines or 2-hydroxyadenine misincorporated opposite GO (7,8-dihydro-8-oxo-guanine). The 9-1-1 complex (Rad9, Rad1 and Hus1 heterotrimer complex) has been suggested as a DNA damage sensor. Here, we report that hMYH (human MYH) interacts with hHus1 (human Hus1) and hRad1 (human Rad1), but not with hRad9. In addition, interactions between MYH and the 9-1-1 complex, from both the fission yeast Schizosaccharomyces pombe and human cells, are partially interchangeable. The major Hus1-binding site is localized to residues 295-350 of hMYH and to residues 245-293 of SpMYH (S. pombe MYH). Val315 of hMYH and Ile261 of SpMYH play important roles for their interactions with Hus1. hHus1 protein and the 9-1-1 complex of S. pombe can enhance the glycosylase activity of SpMYH. Moreover, the interaction of hMYH-hHus1 is enhanced following ionizing radiation. A significant fraction of the hMYH nuclear foci co-localizes with hRad9 foci in H2O2-treated cells. These results reveal that the 9-1-1 complex plays a direct role in base excision repair.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Glicosilasas/metabolismo , Exonucleasas/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , ADN Glicosilasas/genética , Exonucleasas/genética , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homología de Secuencia de Aminoácido
16.
Nucleic Acids Res ; 33(2): 597-604, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15673720

RESUMEN

The base excision repair DNA glycosylase MutY homolog (MYH) is responsible for removing adenines misincorporated into DNA opposite guanine or 7,8-dihydro-8-oxo-guanine (8-oxoG), thereby preventing G:C to T:A mutations. Biallelic germline mutations in the human MYH gene predispose individuals to multiple colorectal adenomas and carcinoma. We have recently demonstrated that hMYH interacts with the mismatch repair protein hMSH6, and that the hMSH2/hMSH6 (hMutSalpha) heterodimer stimulates hMYH activity. Here, we characterize the functional effect of two missense mutations (R227W and V232F) associated with hMYH polyposis that lie within, or adjacent to, the putative hMSH6 binding domain. Neither missense mutation affects the physical interaction between hMYH and hMSH6. However, hMYH(R227W) has a severe defect in A/8-oxoG binding and glycosylase activities, while hMYH(V232F) has reduced A/8-oxoG binding and glycosylase activities. The glycosylase activity of the V232F mutant can be partially stimulated by hMutSalpha but cannot be restored to the wild-type level. Both mutants also fail to complement mutY-deficiency in Escherichia coli. These data define the pathogenic mechanisms underlying two further hMYH polyposis-associated mutations.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , ADN Glicosilasas/genética , Proteínas de Unión al ADN/metabolismo , Mutación Missense , Adulto , Anciano , Secuencia de Aminoácidos , Sitios de Unión , ADN/metabolismo , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Prueba de Complementación Genética , Humanos , Masculino , Datos de Secuencia Molecular , Proteína 2 Homóloga a MutS , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo
17.
Front Biosci ; 11: 3062-80, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16720376

RESUMEN

The base excision repair carried out by bacterial MutY DNA glycosylase and eukaryotic MutY homolog (MYH) is responsible for removing adenines misincorporated into DNA opposite G and 7,8-dihydro-8-oxo-guanines (8-oxoG); thereby preventing G:C to T:A mutations. Escherichia coli MutY (EcMutY) can also remove adenines from A/C and A/5-hydroxyuracil and can remove guanines from G/8-oxoG mismatches at reduced rates. Thus, MutY has a minor role in reducing the mutagenic effects on G:C to A:T transitions and G:C to C:G transversions. The eukaryotic MYH can excise adenines misincorporated opposite GO, G, or C; remove 2-hydroxyadenines mispaired with A,G, and GO; excise G from G/GO mismatch weakly, thereby preventing G:C to T:A transversions. The in vitro and in vivo activities of MYH can be modulated by several proteins including apurinic/apyrimidinic endonuclease (APE1), proliferating cell nuclear antigen (PCNA), and mismatch recognition enzymes MSH2/MSH6. Recently, MYH has been shown to associate with the checkpoint proteins, Rad9, Rad1, and Hus1 (referred as the 9-1-1 complex). Thus, MYH-mediated base excision repair is coordinated with mismatch repair, DNA replication, cell-cycle progression, and DNA-damage checkpoints. Biallelic germ-line mutations in the human MYH gene are associated with recessive inheritance of multiple colorectal adenomas and carcinoma. MYH mutations can cause G:C to T:A mutations of the adenomatous polyposis coli (APC), K-ras, and other genes that control cellular proliferation in the colon.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , Mutación , Animales , Bovinos , Neoplasias Colorrectales/genética , ADN Glicosilasas/deficiencia , Replicación del ADN , Escherichia coli/enzimología , Escherichia coli/genética , Genes cdc , Humanos , Ratones , Ratones Noqueados , Fenotipo , Especificidad por Sustrato , Levaduras/genética
18.
Nucleic Acids Res ; 31(12): 3038-49, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12799430

RESUMEN

Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase involved in reducing mutagenic effects of 7,8-dihydro-8-oxo-guanine (8-oxoG). The C-terminal domain of MutY is required for 8-oxoG recognition and is critical for mutation avoidance of oxidative damage. To determine which residues of this domain are involved in 8-oxoG recognition, we constructed four MutY mutants based on similarities to MutT, which hydrolyzes specifically 8-oxo-dGTP to 8-oxo-dGMP. F294A-MutY has a slightly reduced binding affinity to A/G mismatch but has a severe defect in A/8-oxoG binding at 20 degrees C. The catalytic activity of F294A-MutY is much weaker than that of the wild-type MutY. The DNA binding activity of R249A-MutY is comparable to that of the wild-type enzyme but the catalytic activity is reduced with both A/G and A/8-oxoG mismatches. The biochemical activities of F261A-MutY are nearly similar to those of the wild-type enzyme. The solubility of P262A-MutY was improved as a fusion protein containing streptococcal protein G (GB1 domain) at its N-terminus. The binding of GB1-P262A-MutY with both A/G and A/8-oxoG mismatches are slightly weaker than those of the wild-type protein. The catalytic activity of GB1-P262A-MutY is weaker than that of the wild-type enzyme at lower enzyme concentrations. Importantly, all four mutants can complement mutY mutants in vivo when expressed at high levels; however, F294A, R249A and P262A, but not F261A, are partially defective in vivo when they are expressed at low levels. These results strongly support that the C-terminal domain of MutY is involved not only in 8-oxoG recognition, but also affects the binding and catalytic activities toward A/G mismatches.


Asunto(s)
ADN Glicosilasas , ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Escherichia coli/genética , Prueba de Complementación Genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , N-Glicosil Hidrolasas/genética , Estructura Terciaria de Proteína , Alineación de Secuencia
19.
DNA Repair (Amst) ; 31: 80-90, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26021743

RESUMEN

Cell cycle checkpoints provide surveillance mechanisms to activate the DNA damage response, thus preserving genomic integrity. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) clamp is a DNA damage response sensor and can be loaded onto DNA. 9-1-1 is involved in base excision repair (BER) by interacting with nearly every enzyme in BER. Here, we show that individual 9-1-1 components play distinct roles in BER directed by MYH DNA glycosylase. Analyses of Hus1 deletion mutants revealed that the interdomain connecting loop (residues 134-155) is a key determinant of MYH binding. Both the N-(residues 1-146) and C-terminal (residues 147-280) halves of Hus1, which share structural similarity, can interact with and stimulate MYH. The Hus1(K136A) mutant retains physical interaction with MYH but cannot stimulate MYH glycosylase activity. The N-terminal domain, but not the C-terminal half of Hus1 can also bind DNA with moderate affinity. Intact Rad9 expressed in bacteria binds to and stimulates MYH weakly. However, Rad9(1-266) (C-terminal truncated Rad9) can stimulate MYH activity and bind DNA with high affinity, close to that displayed by heterotrimeric 9(1-266)-1-1 complexes. Conversely, Rad1 has minimal roles in stimulating MYH activity or binding to DNA. Finally, we show that preferential recruitment of 9(1-266)-1-1 to 5'-recessed DNA substrates is an intrinsic property of this complex and is dependent on complex formation. Together, our findings provide a mechanistic rationale for unique contributions by individual 9-1-1 subunits to MYH-directed BER based on subunit asymmetry in protein-protein interactions and DNA binding events.


Asunto(s)
Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , ADN Glicosilasas/genética , Exonucleasas/genética , Animales , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Clonación Molecular , ADN Glicosilasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exonucleasas/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Ratones , Conformación Proteica
20.
DNA Repair (Amst) ; 13: 10-21, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24315136

RESUMEN

MutY DNA glycosylase homologs (MYH or MUTYH) reduce G:C to T:A mutations by removing misincorporated adenines or 2-hydroxyadenines paired with guanine or 8-oxo-7,8-dihydroguanine (8-oxo-G). Mutations in the human MYH (hMYH) gene are associated with the colorectal cancer predisposition syndrome MYH-associated polyposis. To examine the function of MYH in human cells, we regulated MYH gene expression by knockdown or overproduction. MYH knockdown human HeLa cells are more sensitive to the killing effects of H2O2 than the control cells. In addition, hMYH knockdown cells have altered cell morphology, display enhanced susceptibility to apoptosis, and have altered DNA signaling activation in response to oxidative stress. The cell cycle progression of hMYH knockdown cells is also different from that of the control cells following oxidative stress. Moreover, hMYH knockdown cells contain higher levels of 8-oxo-G lesions than the control cells following H2O2 treatment. Although MYH does not directly remove 8-oxo-G, MYH may generate favorable substrates for other repair enzymes. Overexpression of mouse Myh (mMyh) in human mismatch repair defective HCT15 cells makes the cells more resistant to killing and refractory to apoptosis by oxidative stress than the cells transfected with vector. In conclusion, MYH is a vital DNA repair enzyme that protects cells from oxidative DNA damage and is critical for a proper cellular response to DNA damage.


Asunto(s)
Poliposis Adenomatosa del Colon/diagnóstico , Neoplasias Colorrectales/diagnóstico , ADN Glicosilasas/fisiología , Guanosina/análogos & derivados , Poliposis Adenomatosa del Colon/genética , Animales , Apoptosis , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Guanosina/metabolismo , Células HeLa , Humanos , Ratones , Estrés Oxidativo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA