Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Plant Physiol ; 194(3): 1545-1562, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38039100

RESUMEN

Brassinosteroids (BRs) are a group of steroid hormones that play crucial roles in plant growth and development. Atypical bHLH transcription factors that lack the basic region for DNA binding have been implicated in BR signaling. However, the underlying mechanisms of atypical bHLHs in regulation of rice (Oryza sativa) BR signaling are still largely unknown. Here, we describe a systematic characterization of INCREASED LEAF INCLINATION (ILI) subfamily atypical bHLH transcription factors in rice. A total of 8 members, ILI1 to ILI8, with substantial sequence similarity were retrieved. Knockout and overexpression analyses demonstrated that these ILIs play unequally redundant and indispensable roles in BR-mediated growth and development in rice, with a more prominent role for ILI4 and ILI5. The ili3/4/5/8 quadruple and ili1/3/4/7/8 quintuple mutants displayed tremendous BR-related defects with severe dwarfism, erect leaves, and sterility. Biochemical analysis showed that ILIs interact with OsbHLH157 and OsbHLH158, which are also atypical bHLHs and have no obvious transcriptional activity. Overexpression of OsbHLH157 and OsbHLH158 led to drastic BR-defective growth, whereas the osbhlh157 osbhlh158 double mutant developed a typical BR-enhanced phenotype, indicating that OsbHLH157 and OsbHLH158 play a major negative role in rice BR signaling. Further transcriptome analyses revealed opposite effects of ILIs and OsbHLH157/OsbHLH158 in regulation of downstream gene expression, supporting the antagonism of ILIs and OsbHLH157/OsbHLH158 in maintaining the balance of BR signaling. Our results provide insights into the mechanism of BR signaling and plant architecture formation in rice.


Asunto(s)
Oryza , Oryza/genética , Brasinoesteroides , Transducción de Señal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica
2.
Vet Res ; 54(1): 119, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093398

RESUMEN

Clinical avian coccidiosis is typically caused by coinfection with several Eimeria species. Recombinant protein and DNA vaccines have shown promise in controlling coccidiosis. On this basis, DNA vaccines that encode multiple epitopes from different Eimeria species may provide broad protection against coinfections. In this study, we designed a fusion gene fragment, 14EGT, that contained concentrated T-cell epitopes from four common antigens of Eimeria species (14-3-3, elongation factor 2, glyceraldehyde-3-phosphate dehydrogenase, and transhydrogenase). The multiepitope DNA vaccine pVAX1-14EGT and recombinant protein vaccine pET-32a-14EGT (r14EGT) were then created based on the 14EGT fragment. Subsequently, cellular and humoral immune responses were measured in vaccinated chickens. Vaccination-challenge trials were also conducted, where the birds were vaccinated with the 14EGT preparations and later exposed to single or multiple Eimeria species to evaluate the protective efficacy of the vaccines. According to the results, vaccination with 14EGT preparations effectively increased the proportions of CD4+ and CD8+ T cells and the levels of Th1 and Th2 hallmark cytokines. The levels of serum IgG antibodies were also significantly increased. Animal vaccination trials revealed alleviated enteric lesions, weight loss, and oocyst output compared to those of the control groups. The preparations were found to be moderately effective against single Eimeria species, with the anticoccidial index (ACI) ranging from 160 to 180. However, after challenge with multiple Eimeria species, the protection provided by the 14EGT preparations was not satisfactory, with ACI values of 142.18 and 146.41. Collectively, the results suggest that a multiepitope vaccine that encodes the T-cell epitopes of common antigens derived from Eimeria parasites could be a potential and effective strategy to control avian coccidiosis.


Asunto(s)
Coccidiosis , Eimeria tenella , Eimeria , Enfermedades de las Aves de Corral , Vacunas Antiprotozoos , Vacunas de ADN , Animales , Eimeria/genética , Pollos , Epítopos de Linfocito T , Linfocitos T CD8-positivos , Antígenos de Protozoos/genética , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Proteínas Recombinantes , Eimeria tenella/genética
3.
Vet Res ; 54(1): 80, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740213

RESUMEN

Th9 cells play a crucial role in parasite immunity. The development of Th9 cells is facilitated by several cytokines. Key transcription factors, such as STAT6, STAT5, and PU.1, are known to enhance IL-9 expression during the Th9 immune response. NF-κB-mediated transduction pathways participate in the induction of IL-9. In a previous study, we unveiled a unique ribosomal protein derived from Haemonchus contortus excretory-secretory proteins (HcESPs) that interact with host Th9 cells. In the present study, the effects of the Haemonchus contortus ribosomal protein L6 domain DE-containing protein (HcL6) on IL-9 secretion, Th9 differentiation, and IL-9 transcription were assessed by employing ELISA, flow cytometry, and qPCR methodologies. The observations revealed the transcriptional upregulation of several key genes within the Th9 immune response pathway. Moreover, silencing STAT6, PU.1, and NF-κB was found to attenuate the Th9 immune response. In this study, we unveiled the Th9 immune response-inducing capabilities of HcL6 and elucidated some of its underlying mechanisms. These findings suggest that HcL6 is an immunostimulatory antigen capable of inducing the Th9 immune response. These insights could prove instrumental in identifying potential candidate antigens for the development of immunoprophylactic strategies against H. contortus infections.


Asunto(s)
Haemonchus , FN-kappa B , Animales , Cabras , Interleucina-9/genética , Inmunidad
4.
Vet Res ; 53(1): 36, 2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597967

RESUMEN

Th9 cells have been shown to play crucial roles in anti-parasite immunity, pathogenic microbe infection, and allergy. Previous studies have demonstrated that Haemonchus contortus excretory and secretory proteins (HcESPs) induce the proliferation of Th9 cells and alter the transcriptional level of IL-9 as well as its related pathways in the Th9 immune response after infection. However, the exact molecule(s) in HcESPs inducing the Th9 immune response is not yet known. In this study, flow cytometry, co-immunoprecipitation (Co-IP) and shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) were used, and a total of 218 proteins from HcESPs that might interact with goat Th9 cells were identified. By in vitro culture of Th9 cells with HcESPs, 40 binding proteins were identified. In vivo, 38, 47, 42 and 142 binding proteins were identified at 7, 15, 35 and 50 days post-infection (dpi), respectively. Furthermore, 2 of the 218 HcESPs, named DNA/RNA helicase domain containing protein (HcDR) and GATA transcription factor (HcGATA), were confirmed to induce the proliferation of Th9 cells and promote the expression of IL-9 when incubated with goat peripheral blood mononuclear cells (PBMCs). This study represents a proteomics-guided investigation of the interactions between Th9 cells and HcESPs. It provides a new way to explore immunostimulatory antigens among HcESPs and identifies candidates for immune-mediated prevention of H. contortus infection.


Asunto(s)
Enfermedades de las Cabras , Hemoncosis , Haemonchus , Animales , Cromatografía Liquida/veterinaria , Enfermedades de las Cabras/metabolismo , Cabras , Hemoncosis/parasitología , Hemoncosis/veterinaria , Haemonchus/genética , Proteínas del Helminto/metabolismo , Inmunidad , Interleucina-9/metabolismo , Leucocitos Mononucleares , Espectrometría de Masas en Tándem/veterinaria
5.
Vet Res ; 52(1): 3, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407892

RESUMEN

Unlike the successful immunization of native H. contortus antigens that contributed to the realization of the first commercial vaccine Barbervax, not many studies revealed the encouraging protective efficacies of recombinant H. contortus antigens in laboratory trials or under field conditions. In our preliminary study, H. contortus α/ß-hydrolase domain protein (HcABHD) was demonstrated to be an immunomodulatory excretory-secretory (ES) protein that interacts with goat T cells. We herein evaluated the protective capacities of two HcABHD preparations, recombinant HcABHD (rHcABHD) antigen and anti-rHcABHD IgG, against H. contortus challenge via active and passive immunization trials, respectively. Parasitological parameter, antibody responses, hematological pathology and cytokine profiling in unchallenged and challenged goats were monitored and determined throughout both trials. Subcutaneous administration of rHcABHD with Freund adjuvants elicited protective immune responses in challenged goats, diminishing cumulative fecal egg counts (FEC) and total worm burden by 54.0% and 74.2%, respectively, whereas passive immunization with anti-rHcABHD IgG conferred substantial protection to challenged goats by generating a 51.5% reduction of cumulative FEC and a 73.8% reduction of total worm burden. Additionally, comparable changes of mucosal IgA levels, circulating IgG levels, hemoglobin levels, and serum interleukin (IL)-4 and IL-17A levels were observed in rHcABHD protein/anti-rHcABHD IgG immunized goats in both trials. Taken together, the recombinant version of HcABHD might have further application under field conditions in protecting goats against H. contortus infection, and the integrated immunological pipeline of ES antigen identification, screening and characterization may provide new clues for further development of recombinant subunit vaccines to control H. contortus.


Asunto(s)
Enfermedades de las Cabras/parasitología , Hemoncosis/veterinaria , Haemonchus/inmunología , Proteínas del Helminto/uso terapéutico , Vacunas/uso terapéutico , Animales , Antígenos Helmínticos/uso terapéutico , Ensayo de Inmunoadsorción Enzimática , Femenino , Enfermedades de las Cabras/prevención & control , Cabras , Hemoncosis/prevención & control , Masculino , Recuento de Huevos de Parásitos/veterinaria , Vacunas Sintéticas/uso terapéutico
6.
Parasitology ; 148(12): 1497-1508, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34193327

RESUMEN

The prevention, treatment and control of Haemonchus contortus have been increasingly problematic due to its widespread occurrence and anthelmintic resistance. There are very few descriptions of recombinant antigens being protective for H. contortus, despite the success of various native antigen preparations, including Barbervax. We recently identified an H. contortus excretory­secretory antigen, H. contortus adhesion-regulating molecule 1 (HcADRM1), that served as an immunomodulator to impair host T-cell functions. Given the prophylactic potential of HcADRM1 protein as a vaccine candidate, we hereby assessed the efficacies of HcADRM1 preparations against H. contortus infection. Parasitological and immunological parameters were evaluated throughout all time points of the trials, including fecal egg counts (FEC), abomasal worm burdens, complete blood counts, cytokine production profiles and antibody responses. Active vaccination with recombinant HcADRM1 (rHcADRM1) protein induced protective immunity in inoculated goats, resulting in reductions of 48.9 and 58.6% in cumulative FEC and worm burdens. Simultaneously, passive administration of anti-HcADRM1 antibodies generated encouraging levels of protection with 46.7 and 56.2% reductions in cumulative FEC and worm burdens in challenged goats. In addition, HcADRM1 preparations-immunized goats showed significant differences in mucosal and serum antigen-specific immunoglobulin G (IgG) levels, total mucosal IgA levels, haemoglobin values and circulating interferon-γ, interleukin (IL)-4 and IL-17A production compared to control goats in both trials. The preliminary data of these laboratory trials validated the immunoprophylactic effects of rHcADRM1 protein. It can be pursued as a potential vaccine antigen to develop an effective recombinant subunit vaccine against H. contortus under field conditions.


Asunto(s)
Enfermedades de las Cabras , Hemoncosis , Haemonchus , Animales , Anticuerpos Antihelmínticos , Cabras , Hemoncosis/prevención & control , Hemoncosis/veterinaria
7.
J Exp Bot ; 71(14): 4125-4139, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32277756

RESUMEN

As a major hemicellulose component of plant cell walls, xylans play a determining role in maintaining the wall structure. However, the mechanisms of transcriptional regulation of xylan biosynthesis remain largely unknown. Arabidopsis seed mucilage represents an ideal system for studying polysaccharide biosynthesis and modifications of plant cell walls. Here, we identify KNOTTED ARABIDOPSIS THALIANA 7 (KNAT7) as a positive transcriptional regulator of xylan biosynthesis in seed mucilage. The xylan content was significantly reduced in the mucilage of the knat7-3 mutant and this was accompanied by significantly reduced expression of the xylan biosynthesis-related genes IRREGULAR XYLEM 14 (IRX14) and MUCILAGE MODIFIED 5/MUCILAGE-RELATED 21 (MUM5/MUCI21). Electrophoretic mobility shift assays, yeast one-hybrid assays, and chromatin immunoprecipitation with quantitative PCR verified the direct binding of KNAT7 to the KNOTTED1 (KN1) binding site [KBS,TGACAG(G/C)T] in the promoters of IRX7, IRX14, and MUM5/MUCI21 in vitro, in vivo, and in planta. Furthermore, KNAT7 directly activated the expression of IRX14 and MUM5/MUCI21 in transactivation assays in mesophyll protoplasts, and overexpression of IRX14 or MUM5/MUCI21 in knat7-3 partially rescued the defects in mucilage adherence. Taken together, our results indicate that KNAT7 positively regulates xylan biosynthesis in seed-coat mucilage via direct activation of the expression of IRX14 and MUM5/MUCI21.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Mucílago de Planta/metabolismo , Polisacáridos , Proteínas Represoras/metabolismo , Semillas/metabolismo , Xilanos
8.
Parasite Immunol ; 42(5): e12703, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32043596

RESUMEN

Excretory/secretory proteins of Haemonchus contortus (HcESPs) intermingle comprehensively with host immune cells and modulate host immune responses. In this study, H contortus ES antigen named as elongation factor 1 alpha (HcEF-1α) was cloned and expressed. The influences of recombinant HcEF-1α on multiple functions of goat peripheral blood mononuclear cells (PBMCs) were observed in vitro. Immunoblot analysis revealed that rHcEF-1α was recognized by the serum of goat infected with H contortus. Immunofluorescence analysis indicated that rHcEF-1α was bound on surface of PBMCs. Moreover, the productions of IL-4, TGF-ß1, IFN-γ and IL-17 of cells were significantly modulated by the incubation with rHcEF-1α. The production of interleukin IL-10 was decreased. Cell migration, cell proliferation and cell apoptosis were significantly increased; however, nitric oxide production (NO) was significantly decreased. The MHC II molecule expression of cells incubated with rHcEF-1α was increased significantly, whereas MHC-I was not changed as compared to the control groups (PBS control and pET32a). These findings indicated that rHcEF-1α protein might play essential roles in functional regulations of HcESPs on goat PBMC and mediate the immune responses of the host during host-parasite relationship.


Asunto(s)
Enfermedades de las Cabras/parasitología , Hemoncosis/veterinaria , Haemonchus/inmunología , Proteínas del Helminto/inmunología , Leucocitos Mononucleares/inmunología , Factor 1 de Elongación Peptídica/inmunología , Animales , Apoptosis , Movimiento Celular , Proliferación Celular , Enfermedades de las Cabras/genética , Enfermedades de las Cabras/inmunología , Enfermedades de las Cabras/fisiopatología , Cabras , Hemoncosis/inmunología , Hemoncosis/parasitología , Hemoncosis/fisiopatología , Haemonchus/genética , Proteínas del Helminto/genética , Interleucina-17/genética , Interleucina-17/inmunología , Óxido Nítrico/inmunología , Factor 1 de Elongación Peptídica/genética
9.
Vet Res ; 51(1): 65, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404195

RESUMEN

Haemonchus contortus has evolved highly integrated and sophisticated mechanisms to promote coexistence with hosts. The excretory-secretory (ES) products generated by this parasite contribute to the regulation of the host immune response to facilitate immune evasion and induce chronicity, but the proteins responsible for this process and the exact cellular mechanisms have yet to be defined. In this study, we identified 114 H. contortus ES proteins (HcESPs) interacting with host T cells and 15 T cell binding receptors via co-immunoprecipitation and shotgun liquid chromatography-tandem mass spectrometry analysis. Based on bioinformatics analysis, we demonstrated that HcESPs could inhibit T cell viability, induce cell apoptosis, suppress T cell proliferation and cause cell cycle arrest. Furthermore, the stimulation of HcESPs exerted critical control effects on T cell cytokine production profiles, predominantly promoting the secretion of interleukin (IL)-10, IL-17A and transforming growth factor-ß1 and inhibiting IL-2, IL-4 and interferon-γ production. Collectively, these findings may provide insights into the interaction between ES proteins and key host effector cells, enhancing our understanding of the molecular mechanism underlying parasite immune evasion and providing new clues for novel vaccine development.


Asunto(s)
Haemonchus/fisiología , Proteínas del Helminto/inmunología , Evasión Inmune , Linfocitos T/inmunología , Animales , Cabras/inmunología , Proteómica , Ratas , Ratas Sprague-Dawley
10.
Parasite Immunol ; 41(7): e12625, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30883834

RESUMEN

Interleukin 2 (IL-2) is an important immune regulatory factor in the immune response of the host. However, little is known about the inhibitor of host IL-2 in Haemonchus contortus infection. In this study, we found that globin domain-containing protein (HCGB) and Protein Y75B8A.8 (HC8) from H contortus excretory and secretory products are two binding proteins of IL-2 in goats. The yeast two-hybrid screening further validated the positive interactions of IL-2 with HCGB and HC8. Meanwhile, we found that HC8 had inhibitory effects on IL-2-induced peripheral blood mononuclear cell (PBMC) proliferation, while HCGB did not. Furthermore, transcriptional analysis revealed that HC8 could block the IL-2-activated signalling pathway. Our results showed that HC8 was a functional inhibitor of goat IL-2.


Asunto(s)
Enfermedades de las Cabras/inmunología , Hemoncosis/inmunología , Haemonchus/inmunología , Proteínas del Helminto/inmunología , Interleucina-2/antagonistas & inhibidores , Animales , Enfermedades de las Cabras/parasitología , Cabras , Interleucina-2/inmunología , Leucocitos Mononucleares/inmunología , Transducción de Señal
11.
Vet Res ; 50(1): 42, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164173

RESUMEN

Haemonchus contortus (H. contortus) has evolved sophisticated evasion mechanisms to ensure their survival, including generating excretion and secretion products (ESPs) to regulate the secretion of host cytokines. Interleukin 4 (IL4) is a classic T-helper cell type 2 (Th2)-type cytokine that plays an irreplaceable role against nematode infection. In this study, three proteins, glutathione S-transferase domain containing protein (HcGST), transthyretin domain containing protein (HcTTR) and calponin actin-binding domain containing protein (HcCab), were identified to bind to goat IL4 by co-immunoprecipitation (Co-IP) assays and yeast two-hybrid screening. Additionally, cell proliferation analysis showed that HcTTR blocked the IL4-induced proliferation of peripheral blood mononuclear cells in goats, while HcGST and HcCab did not. In addition, HcTTR could also downregulate the transcription of candidate genes in the IL4-induced JAK/STAT pathway. These results indicated that HcTTR is a novel antagonist against goat IL4 from HcESPs, and this information could improve our understanding of the relationship between host cytokines and parasite infections.


Asunto(s)
Regulación hacia Abajo/genética , Cabras/fisiología , Haemonchus/genética , Proteínas del Helminto/genética , Interleucina-4/antagonistas & inhibidores , Receptores de Albúmina/genética , Animales , Cabras/parasitología , Haemonchus/metabolismo , Proteínas del Helminto/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores de Albúmina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/genética , Transcripción Genética/genética
12.
J Eukaryot Microbiol ; 65(6): 860-869, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29722109

RESUMEN

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan that can infect almost all nucleated cells. Histone proteins and DNA form the nucleosomes, which are the fundamental building blocks of eukaryotic chromatin. Histone 4 is an essential component of a histone octamer. In the present study, T. gondii histone 4 (TgH4) was cloned and the regulatory effect of TgH4 on murine macrophages was characterized. Bioinformatics analysis revealed that TgH4 was highly conserved in structure. Recombinant TgH4 (rTgH4) protein was identified by sera from rats experimentally infected with T. gondii and native TgH4 in the total soluble protein of T. gondii tachyzoites was recognized by polyclonal antibodies against rTgH4, as indicated by immunoblotting analysis. Immunofluorescence assay showed that TgH4 binds to macrophages. Following incubation with rTgH4, the toll-like receptor 4 (TLR4) level of the macrophages was downregulated. Meanwhile, chemotaxis and the proliferation of macrophages were inhibited. However, rTgH4 can promote phagocytosis, apoptosis, and the secretion of nitric oxide, interleukin-6, and tumor necrosis factor-α from macrophages. Just 80 µg/ml rTgH4 can significantly elevate the secretion of interleukin-10 and interleukin-1ß (p < 0.05 and p < 0.01). Viewed together, these outcomes indicated that rTgH4 can affect the functions of murine macrophages in vitro.


Asunto(s)
Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/metabolismo , Macrófagos/metabolismo , Proteínas/metabolismo , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Apoptosis , Proteínas de Ciclo Celular , Citocinas/metabolismo , Regulación hacia Abajo , Femenino , Epítopos Inmunodominantes/sangre , Epítopos Inmunodominantes/genética , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/inmunología , Ratones , Óxido Nítrico/metabolismo , Fagocitosis , Proteínas Protozoarias/sangre , Proteínas Protozoarias/genética , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/sangre , Alineación de Secuencia , Análisis de Secuencia de Proteína , Receptor Toll-Like 4/metabolismo , Toxoplasma/patogenicidad , Factor de Necrosis Tumoral alfa/metabolismo
13.
Biochem Biophys Res Commun ; 484(2): 248-254, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28111342

RESUMEN

HER2 is an orphan receptor tyrosine kinase of the EGFR families and is considered to be a key tumor driver gene [1]. Breast cancer and gastric cancer with HER2 amplification can be effectively treated by its neutralizing antibody, Herceptin. In clinic, Immunohistochemistry (IHC) was used as the primary screening method to diagnose HER2 amplification [2]. However, recent evidence suggested that the frequently used rabbit HER2 antibody 4B5 cross reacted with another family member HER4 [3]. IHC staining with 4B5 also indicated that there was strong non-specific cytoplasmic and nuclear signals in normal gastric mucosal cells and some gastric cancer samples. Using a protein lysate array which covers 85% of the human proteome, we have confirmed that the 4B5 bound to HER4 and a nuclear protein ZSCAN18 besides HER2. The non-specific binding accounts for the unexpected cytoplasmic and nuclear staining of 4B5 of normal gastric epithelium. Finally, we have developed a novel mouse HER2 monoclonal antibody UMAB36 with similar sensitivity to 4B5 but only reacted to HER2 across the 17,000 proteins on the protein chip. In 129 breast cancer and 158 gastric cancer samples, UMAB36 showed 100% sensitivity and specificity comparing to the HER2 FISH reference results with no unspecific staining in the gastric mucosa layer. Therefore, UMAB36 could provide as an alternative highly specific IHC reagent for testing HER2 amplification in gastric cancer populations.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Receptor ErbB-2/inmunología , Especificidad de Anticuerpos , Línea Celular Tumoral , Reacciones Cruzadas , Humanos , Inmunohistoquímica , Análisis por Matrices de Proteínas , Neoplasias Gástricas/inmunología
14.
J Eukaryot Microbiol ; 63(6): 709-721, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27037629

RESUMEN

The gene of Eimeria acervulina microneme protein 3 (EaMIC3) was cloned and characterized. According to the conserved sequence, the 3'- and 5'-ends of EaMIC3 were amplified by the rapid amplification of cDNA ends (RACE). The full length cDNA of this gene was obtained by overlapping the sequences of 3'- and 5'-extremities and amplification by reverse transcription PCR. The sequence analysis revealed that the opening reading frame (ORF) of EaMIC3 was 2,607 bp and encoded a protein of 868 amino acids with 93.04 kDa. Western blotting assay showed that the recombinant protein was successfully recognized by the sera of chickens experimentally infected with E. acervulina, whereas the native protein in the somatic extract of sporozoites was as well detected by sera from rats immunized with the recombinant protein of EaMIC3. Immunofluorescence analysis indicated that EaMIC3 was expressed in the sporozoites and merozoites stages of E. acervulina. Animal challenge experiments demonstrated that the recombinant protein of EaMIC3 could significantly increase the average body weight gains, decrease the mean lesion scores and the oocyst outputs of the immunized chickens and presented anticoccidial index (ACI) more than 165. Moreover, EaMIC3 protein produced significantly high level of IgG antibody, IFN-γ, IL-10, IL-17 TGF-ß, CD4+ , and CD8+ .


Asunto(s)
Coccidiosis/veterinaria , Eimeria/genética , Enfermedades de las Aves de Corral/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Pollos , Coccidiosis/genética , Coccidiosis/inmunología , Coccidiosis/parasitología , Eimeria/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/inmunología
15.
Poult Sci ; 103(7): 103865, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810564

RESUMEN

Chicken coccidiosis has inflicted significant economic losses upon the poultry industry. The primary strategies for preventing and controlling chicken coccidiosis include anticoccidial drugs and vaccination. However, these approaches face limitations, such as drug residues and resistance associated with anticoccidial drugs, and safety concerns related to live vaccines. Consequently, the urgent development of innovative vaccines, such as subunit vaccines, is imperative. In previous study, we screened 2 candidate antigens: Eimeria maxima lysophospholipase (EmLPL) and E. maxima regulatory T cell inducing molecule 1 (EmTregIM-1). To investigate the immune protective effect of the 2 candidate antigens against Eimeria maxima (E. maxima) infection, we constructed recombinant plasmids, namely pET-28a-EmLPL and pET-28a-EmTregIM-1, proceeded to induce the expression of recombinant proteins of EmLPL (rEmLPL) and EmTregIM-1 (rEmTregIM-1). The immunogenic properties of these proteins were confirmed through western blot analysis. Targeting EmLPL and EmTregIM-1, we developed subunit vaccines and encapsulated them in PLGA nanoparticles, resulting in nano-vaccines: PLGA-rEmLPL and PLGA-rEmTregIM-1. The efficacy of these vaccines was assessed through animal protection experiments. The results demonstrated that rEmLPL and rEmTregIM-1 were successfully recognized by anti-E. maxima chicken sera and His-conjugated mouse monoclonal antibodies. Immunization with both subunit and nano-vaccines containing EmLPL and EmTregIM-1 markedly mitigated weight loss and reduced oocyst shedding in chickens infected with E. maxima. Furthermore, the anticoccidial indexes (ACI) for both rEmLPL and PLGA-rEmLPL exceeded 160, whereas those for rEmTregIM-1 and PLGA-rEmTregIM-1 were above 120 but did not reach 160, indicating superior protective efficacy of the rEmLPL and PLGA-rEmLPL formulations. By contrast, the protection afforded by rEmTregIM-1 and PLGA-rEmTregIM-1 was comparatively lower. Thus, EmLPL is identified as a promising candidate antigen for vaccine development against E. maxima infection.


Asunto(s)
Pollos , Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Vacunas Antiprotozoos , Animales , Eimeria/inmunología , Coccidiosis/veterinaria , Coccidiosis/prevención & control , Coccidiosis/inmunología , Coccidiosis/parasitología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/inmunología , Vacunas Antiprotozoos/inmunología , Vacunas Antiprotozoos/administración & dosificación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Antígenos de Protozoos/inmunología
16.
Vaccines (Basel) ; 12(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276673

RESUMEN

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan that can elicit a robust immune response during infection. Macrophage cells have been shown to play an important role in the immune response against T. gondii. In our previous study, the eukaryotic translation initiation factor 5A (eIF-5A) gene of T. gondii was found to influence the invasion and replication of tachyzoites. In this study, the recombinant protein of T. gondii eIF-5A (rTgeIF-5A) was incubated with murine macrophages, and the regulatory effect of TgeIF-5A on macrophages was characterized. Immunofluorescence assay showed that TgeIF-5A was able to bind to macrophages and partially be internalized. The Toll-like receptor 4 (TLR4) level and chemotaxis of macrophages stimulated with TgeIF-5A were reduced. However, the phagocytosis and apoptosis of macrophages were amplified by TgeIF-5A. Meanwhile, the cell viability experiment indicated that TgeIF-5A can promote the viability of macrophages, and in the secretion assays, TgeIF-5A can induce the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) from macrophages. These findings demonstrate that eIF-5A of T. gondii can modulate the immune response of murine macrophages in vitro, which may provide a reference for further research on developing T. gondii vaccines.

17.
Poult Sci ; 103(2): 103359, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128458

RESUMEN

IFN-γ plays a crucial role in resisting intracellular parasitic protozoa, such as Eimeria species. In our previous study, we identified 4 molecules derived from Eimeria maxima (E. maxima) that significantly inhibited IFN-γ production. However, the mechanism underlying this inhibitory effect remains unknown. In this study, we first investigated the effects of these 4 IFN-γ inhibitory molecules on the expression levels of chicken Toll-like receptors (chTLRs), IL-12, IL-10, TGF-ß, and TNF-α in chicken macrophage HD11 and bone marrow-derived dendritic cells (BMDCs). The results demonstrated that these 4 inhibitory molecules significantly downregulated the mRNA levels of chTLR-2, chTLR-4, chTLR-21, and both mRNA and protein levels of IL-12. Subsequently, to clarify the effects of these 4 inhibitory molecules on the IL-12 secretion-related signaling pathways in chicken macrophages, qRT-PCR and Western blot were used to detect the changes of key molecules involved in the signaling pathways of IL-12 secretion (NF-κB, ERK1/2, p38, JNK, STAT3) following coincubation with these inhibitory molecules. Finally, RNAi was employed to verify the function of key molecules in the signaling pathway. The results revealed a significant upregulation in the expression of ERK1/2 phosphorylated protein induced by the 4 inhibitory molecules. Knockdown of the ERK1/2 gene significantly reduced the inhibitory effect of the 4 E. maxima inhibitory molecules on IL-12. These findings indicate that the 4 inhibitory molecules can inhibit the secretion of IL-12 by upregulating the expression of ERK1/2 phosphorylated protein, which is a key molecule in the ERK-MAPK pathway. Our study may contribute to elucidating the mechanisms underlying immune evasion during E. maxima infections, thereby providing new insights for the control of chicken coccidiosis.


Asunto(s)
Pollos , Eimeria , Animales , Interleucina-12/genética , Interleucina-12/metabolismo , Transducción de Señal , Macrófagos , ARN Mensajero/metabolismo
18.
Poult Sci ; 103(8): 103871, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848632

RESUMEN

Clostridium perfringens is an important opportunistic microorganism in commercial poultry production that is implicated in necrotic enteritis (NE) outbreaks. This disease poses a severe financial burden on the global poultry industry, causing estimated annual losses of $6 billion globally. The ban on in-feed antibiotic growth promoters has spurred investigations into approaches of alternatives to antibiotics, among which Bacillus probiotics have demonstrated varying degrees of effectiveness against NE. However, the precise mechanisms underlying Bacillus-mediated beneficial effects on host responses in NE remain to be further elucidated. In this manuscript, we conducted in vitro and genomic mining analysis to investigate anti-C. perfringens activity observed in the supernatants derived from 2 Bacillus amyloliquefaciens strains (FS1092 and BaD747). Both strains demonstrated potent anti-C. perfringens activities in in vitro studies. An analysis of genomes from 15 B. amyloliquefaciens, 11 B. velezensis, and 2 B. subtilis strains has revealed an intriguing clustering pattern among strains known to possess anti-C. perfringens activities. Furthermore, our investigation has identified 7 potential antimicrobial compounds, predicted as secondary metabolites through antiSMASH genomic mining within the published genomes of B. amyloliquefaciens species. Based on in vitro analysis, BaD747 may have the potential as a probiotic in the control of NE. These findings not only enhance our understanding of B. amyloliquefaciens's action against C. perfringens but also provide a scientific rationale for the development of novel antimicrobial therapeutic agents against NE.


Asunto(s)
Bacillus amyloliquefaciens , Infecciones por Clostridium , Clostridium perfringens , Enfermedades de las Aves de Corral , Probióticos , Clostridium perfringens/fisiología , Bacillus amyloliquefaciens/química , Probióticos/farmacología , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Enfermedades de las Aves de Corral/microbiología , Animales , Genoma Bacteriano , Antibacterianos/farmacología , Genómica , Bacillus/fisiología
19.
Immun Inflamm Dis ; 12(6): e1321, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888451

RESUMEN

BACKGROUND: For decades, studies have demonstrated the anti-inflammatory potential of proteins secreted by helminths in allergies and asthma. Previous studies have demonstrated the immunomodulatory capabilities of Succinate Coenzyme A ligase beta-like protein (SUCLA-ß) derived from Trichinella spiralis, a crucial excretory product of this parasite. OBJECTIVE: To explore the therapeutic potential of SUCLA-ß in alleviating and controlling ovalbumin (OVA)-induced allergic asthma, as well as its influence on host immune modulation. METHODS: In this research, we utilized the rTs-SUCLA-ß protein derived from T. spiralis to investigate its potential in mitigating airway inflammation in a murine model of asthma induced by OVA sensitization/stimulation, both pre- and post-challenge. The treatment's efficacy was assessed by quantifying the extent of inflammation in the lungs. RESULTS: Treatment with rTs-SUCLA-ß demonstrated efficacy in ameliorating OVA-induced airway inflammation, as evidenced by a reduction in eosinophil infiltration, levels of OVA-specific Immunoglobulin E, interferon-γ, interleukin (IL)-9, and IL-17A, along with an elevation in IL-10. The equilibrium between Th17 and Treg cells plays a pivotal role in modulating the abundance of inflammatory cells within the organism, thereby ameliorating inflammation and alleviating symptoms associated with allergic asthma. CONCLUSIONS AND CLINICAL RELEVANCE: Our data revealed that T. spiralis-derived Ts-SUCLA-ß protein may inhibit the allergic airway inflammation by regulating host immune responses.


Asunto(s)
Asma , Proteínas del Helminto , Trichinella spiralis , Animales , Femenino , Ratones , Asma/inmunología , Asma/tratamiento farmacológico , Citocinas/metabolismo , Citocinas/inmunología , Modelos Animales de Enfermedad , Proteínas del Helminto/inmunología , Proteínas del Helminto/farmacología , Hipersensibilidad/inmunología , Hipersensibilidad/tratamiento farmacológico , Inmunoglobulina E/inmunología , Pulmón/inmunología , Pulmón/patología , Ratones Endogámicos BALB C , Ovalbúmina/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Trichinella spiralis/inmunología
20.
Poult Sci ; 103(4): 103486, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350385

RESUMEN

Eimeria maxima microneme protein 3 (EmMIC3) is pivotal in the initial recognition and attachment of E. maxima sporozoites to host cells. EmMIC3 comprises 5 tandem Type I microneme adhesive repeat (MAR) domains, among which MAR2 of EmMIC3 (EmMAR2) has been identified as the primary determinant of EmMIC3-mediated tissue tropism. Nonetheless, the mechanisms through which EmMAR2 guides the parasite to its invasion site through interactions with host receptors remained largely uncharted. In this study, we employed yeast two-hybrid (YTH) screening assays and shotgun LC-MS/MS analysis to identify EmMAR2 receptors in chicken intestine epithelial cells. ATPase H+ transporting V1 subunit G1 (ATP6V1G1), receptor accessory protein 5 (REEP5), transmembrane p24 trafficking protein (TMED2), and delta 4-desaturase sphingolipid 1 (DEGS1) were characterized as the 4 receptors of EmMAR2 by both assays. By blocking the interaction of EmMAR2 with each receptor using specific antibodies, we observed varying levels of inhibition on the invasion of E. maxima sporozoites, and the combined usage of all 4 antibodies resulted in the most pronounced inhibitory effect. Additionally, the spatio-temporal expression profiles of ATP6V1G1, REEP5, TMED2, and DEGS1 were assessed. The tissue-specific expression patterns of EmMAR2 receptors throughout E. maxima infection suggested that ATP6V1G1 and DEGS1 might play a role in early-stage invasion, whereas TMED2 could be involved in middle and late-stage invasion and REEP5 and DEGS1 may participate primarily in late-stage invasion. Consequently, E. maxima may employ a multitude of ligand-receptor interactions to drive invasion during different stages of infection. This study marks the first report of EmMAR2 receptors at the interface between E. maxima and the host, providing insights into the invasion mechanisms of E. maxima and the pathogenesis of coccidiosis.


Asunto(s)
Coccidiosis , Eimeria tenella , Eimeria , Enfermedades de las Aves de Corral , Animales , Pollos/metabolismo , Cromatografía Liquida/veterinaria , Micronema , Proteínas Protozoarias/genética , Espectrometría de Masas en Tándem/veterinaria , Coccidiosis/parasitología , Coccidiosis/veterinaria , Intestinos/parasitología , Células Epiteliales/metabolismo , Enfermedades de las Aves de Corral/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA