Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 193(9): 1208-1222, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328100

RESUMEN

Oral submucous fibrosis (OSF) is a potentially malignant disorder of the oral mucosa; however, whether and how the fibrotic matrix of OSF is involved in the malignant transformation of epithelial cells remains unknown. Herein, oral mucosa tissue from patients with OSF, OSF rat models, and their controls were used to observe the extracellular matrix changes and epithelial-mesenchymal transformation (EMT) in fibrotic lesions. Compared with controls, oral mucous tissues from patients with OSF showed an increased number of myofibroblasts, a decreased number of blood vessels, and increased type I and type III collagen levels. In addition, the oral mucous tissues from humans and OSF rats showed increased stiffness, accompanied by increased EMT activities of epithelial cells. The EMT activities of stiff construct-cultured epithelial cells were increased significantly by exogenous piezo-type mechanosensitive ion channel component 1 (Piezo1) activation, and decreased by yes-associated protein (YAP) inhibition. During ex vivo implantation, oral mucosal epithelial cells of the stiff group showed increased EMT activities and increased levels of Piezo1 and YAP compared with those in the sham and soft groups. These results indicate that increased stiffness of the fibrotic matrix in OSF led to increased proliferation and EMT of mucosal epithelial cells, in which the Piezo1-YAP signal transduction is important.


Asunto(s)
Fibrosis de la Submucosa Bucal , Humanos , Ratas , Animales , Fibrosis de la Submucosa Bucal/metabolismo , Fibrosis de la Submucosa Bucal/patología , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Transición Epitelial-Mesenquimal , Miofibroblastos/metabolismo , Células Epiteliales/metabolismo
2.
Curr Issues Mol Biol ; 45(8): 6804-6822, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37623249

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent and severe side effect of first-line chemotherapeutic agents. The association between circular RNAs (circRNAs) and CIPN remains unclear. In this study, CIPN models were constructed with Taxol, while 134 differentially expressed circRNAs, 353 differentially expressed long non-coding RNAs, and 86 differentially expressed messenger RNAs (mRNAs) were identified utilizing RNA sequencing. CircRNA-targeted microRNAs (miRNAs) were predicted using miRanda, and miRNA-targeted mRNAs were predicted using TargetScan and miRDB. The intersection of sequencing and mRNA prediction results was selected to establish the circRNA-miRNA-mRNA networks, which include 15 circRNAs, 18 miRNAs, and 11 mRNAs. Functional enrichment pathway analyses and immune infiltration analyses revealed that differentially expressed mRNAs were enriched in the immune system, especially in T cells, monocytes, and macrophages. Cdh1, Satb2, Fas, P2ry2, and Zfhx2 were further identified as hub genes and validated by RT-qPCR, correlating with macrophages, plasmacytoid dendritic cells, and central memory CD4 T cells in CIPN. Additionally, we predicted the associated diseases, 36 potential transcription factors (TFs), and 30 putative drugs for hub genes using the DisGeNET, TRRUST, and DGIdb databases, respectively. Our results indicated the crucial role of circRNAs, and the immune microenvironment played in CIPN, providing novel insights for further research.

3.
Neurochem Res ; 48(12): 3652-3664, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37592110

RESUMEN

Evidence demonstrates that DNA methylation is associated with the occurrence and development of various neurological diseases. However, the potential target genes undergoing DNA methylation, as well as their involvement in the chemotherapy drug oxaliplatin-induced neuropathic pain, are still unclear. Here, Lrfn4, which showed hypermethylation in the promoter regions, was screened from the SRA methylation database (PRJNA587622) following oxaliplatin treatment. MeDIP and qPCR assays identified that oxaliplatin treatment increased the methylation in Lrfn4 promoter region and decreased the expression of LRFN4 in the spinal dorsal horn. The assays with gain and loss of LRFN4 function demonstrated that LRFN4 downregulation in spinal dorsal horn contributed to the oxaliplatin-induced mechanical allodynia and cold hyperalgesia. Moreover, oxaliplatin treatment increased the DNA methyltransferases DNMT3a expression and the interaction between DNMT3a and Lrfn4 promoter, while inhibition of DNMT3a prevented the downregulation of LRFN4a induced by oxaliplatin. We also observed that the transcriptional factor POU2F1 can bind to the predicted sites in DNMT3a promoter region, oxaliplatin treatment upregulated the expression of transcriptional factor POU2F1 in dorsal horn neurons. Intrathecal injection of POU2F1 siRNA prevented the DNMT3a upregulation and the LRFN4 downregulation induced by oxaliplatin. Additionally, intrathecal injection of DNMT3a siRNA or POU2F1 siRNA alleviated the mechanical allodynia induced by oxaliplatin. These findings suggested that transcription factor POU2F1 upregulated the expression of DNMT3a, which subsequently decreased LRFN4 expression through hypermethylation modification in spinal dorsal horn, thereby mediating neuropathic pain following oxaliplatin treatment.


Asunto(s)
Metilación de ADN , Neuralgia , Regulación hacia Abajo , Hiperalgesia/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Oxaliplatino/efectos adversos , ARN Interferente Pequeño/uso terapéutico , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Ratas
4.
Oral Dis ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38148479

RESUMEN

OBJECTIVES: To explore the role of fibrocytes in the recurrence and calcification of fibrous epulides. METHODS: Different subtypes of fibrous epulides and normal gingival tissue specimens were first collected for histological and immunofluorescence analyses to see if fibrocytes were present and whether they differentiated into myofibroblasts and osteoblasts upon stimulated by transforming growth factor-ß1 (TGF-ß1). Electron microscopy and elemental analysis were used to characterize the extracellular microenvironment in different subtypes of fibrous epulides. Human peripheral blood mononuclear cells (PBMCs) were subsequently isolated from in vitro models to mimic the microenvironment in fibrous epulides to identify whether TGF-ß1 as well as the calcium and phosphorus ion concentration in the extracellular matrix (ECM) of a fibrous epulis trigger fibrocyte differentiation. RESULTS: Fibrous epulides contain fibrocytes that accumulate in the local inflammatory environment and have the ability to differentiate into myofibroblasts or osteoblasts. TGF-ß1 promotes fibrocytes differentiation into myofibroblasts in a concentration-dependent manner, while TGF-ß1 stimulates the fibrocytes to differentiate into osteoblasts when combined with a high calcium and phosphorus environment. CONCLUSIONS: Our study revealed fibrocytes play an important role in the fibrogenesis and osteogenesis in fibrous epulis, and might serve as a therapeutic target for the inhibition of recurrence of fibrous epulides.

5.
Proc Natl Acad Sci U S A ; 117(23): 13000-13011, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32434918

RESUMEN

Extensive studies in prostate cancer and other malignancies have revealed that l-methionine (l-Met) and its metabolites play a critical role in tumorigenesis. Preclinical and clinical studies have demonstrated that systemic restriction of serum l-Met, either via partial dietary restriction or with bacterial l-Met-degrading enzymes exerts potent antitumor effects. However, administration of bacterial l-Met-degrading enzymes has not proven practical for human therapy because of problems with immunogenicity. As the human genome does not encode l-Met-degrading enzymes, we engineered the human cystathionine-γ-lyase (hMGL-4.0) to catalyze the selective degradation of l-Met. At therapeutically relevant dosing, hMGL-4.0 reduces serum l-Met levels to >75% for >72 h and significantly inhibits the growth of multiple prostate cancer allografts/xenografts without weight loss or toxicity. We demonstrate that in vitro, hMGL-4.0 causes tumor cell death, associated with increased reactive oxygen species, S-adenosyl-methionine depletion, global hypomethylation, induction of autophagy, and robust poly(ADP-ribose) polymerase (PARP) cleavage indicative of DNA damage and apoptosis.


Asunto(s)
Cistationina gamma-Liasa/farmacología , Metionina/antagonistas & inhibidores , Mutagénesis Sitio-Dirigida , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/aislamiento & purificación , Cistationina gamma-Liasa/uso terapéutico , Daño del ADN/efectos de los fármacos , Pruebas de Enzimas , Humanos , Masculino , Metionina/sangre , Metionina/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasas/metabolismo , Neoplasias de la Próstata/sangre , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Pruebas de Toxicidad Aguda , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Altern Ther Health Med ; 29(3): 212-217, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36795522

RESUMEN

Context: Ischemic stroke accounts for 85% of all types of stroke. Ischemic preconditioning can provide protection against cerebral ischemic injury. Erythromycin can induce ischemic preconditioning in brain tissue. Objective: The study intended to investigate the protective effects of erythromycin preconditioning on infarct volume after focal cerebral ischemia in rats and on the expression of tumor necrosis factor-alpha (TNF-α) and neuronal nitric oxide synthases (nNOS) in rat-brain tissue. Design: The research team performed an animal study. Setting: The study took place in the Department of Neurosurgery at the First Hospital of China Medical University in Shenyang, China. Animals: The animals were 60 healthy male Wistar rats, aged 6 to 8 weeks and weighing 270 to 300 g. Intervention: The research team randomly divided the rats into a control group in simple randomization and intervention groups preconditioning them according to their body weights using different concentrations of erythromycin-5, 20, 35, 50, and 65 mg/kg, with 10 rats in each group. The team induced focal cerebral ischemia and reperfusion using a modified, longa-wire embolization method. The control group, also 10 rats, received an injection intramuscularly of normal saline. Outcome Measures: The research team: (1) calculated the volume of cerebral infarction using triphenyltetrazolium chloride (TTC) staining with image analysis software and (2) investigated the effects of erythromycin preconditioning on the expression of TNF-α and nNOS mRNA and protein in the rat-brain tissue using real-time polymerase chain reaction (PCR) and Western blot. Results: Erythromycin preconditioning reduced the volume of cerebral infarction after induction of cerebral ischemia, showing a U-shaped, dose-response relationship, and the cerebral infarction volume significantly decreased in the 20-, 35-, and 50-mg/kg erythromycin preconditioning groups (P < .05). Erythromycin preconditioning at 20-, 35-, and 50-mg/kg significantly down-regulated the mRNA and protein expression of TNF-α in the rat-brain tissue (P < .05), with the 35-mg/kg erythromycin preconditioning group having the most significant downregulation. Erythromycin preconditioning at 20-, 35-, and 50-mg/kg upregulated the mRNA and protein expression of nNOS in the rat-brain tissue (P < .05), with the 35-mg/kg erythromycin preconditioning group having the most significant upregulation of the mRNA and protein of nNOS. Conclusions: Erythromycin preconditioning had a protective effect against focal cerebral ischemia in rats, and the best protective effect occurred for the 35-mg/kg preconditioning. The reason may be related to the fact that erythromycin preconditioning significantly upregulated nNOS and downregulated TNF-α in the brain tissue.


Asunto(s)
Isquemia Encefálica , Factor de Necrosis Tumoral alfa , Animales , Masculino , Ratas , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Eritromicina/farmacología , Eritromicina/uso terapéutico , Ratas Sprague-Dawley , Ratas Wistar , ARN Mensajero , Factor de Necrosis Tumoral alfa/metabolismo
7.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569705

RESUMEN

Brain tumors have been proved challenging to treat. Here we established a Multi-Target Neural Differentiation (MTND) therapeutic cocktail to achieve effective and safe treatment of brain malignancies by targeting the important hallmarks in brain cancers: poor cell differentiation and compromised cell cycle. In-vitro and in-vivo experiments confirmed the significant therapeutic effect of our MTND therapy. Significantly improved therapeutic effects over current first-line chemo-drugs have been identified in clinical cells, with great inhibition of the growth and migration of tumor cells. Further in-vivo experiments confirmed that sustained MTND treatment showed a 73% reduction of the tumor area. MTND also induced strong expression of phenotypes associated with cell cycle exit/arrest and rapid neural reprograming from clinical glioma cells to glutamatergic and GABAergic expressing cells, which are two key neuronal types involved in many human brain functions, including learning and memory. Collectively, MTND induced multi-targeted genotypic expression changes to achieve direct neural conversion of glioma cells and controlled the cell cycle/tumorigenesis development, helping control tumor cells' malignant proliferation and making it possible to treat brain malignant tumors effectively and safely. These encouraging results open avenues to developing new therapies for brain malignancies beyond cytotoxic agents, providing more effective medication recommendations with reduced toxicity.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioma , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Glioma/tratamiento farmacológico , Glioma/metabolismo , Antineoplásicos/uso terapéutico , Diferenciación Celular
8.
J Nanobiotechnology ; 20(1): 460, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307790

RESUMEN

Repair of spinal cord injury (SCI) depends on microenvironment improvement and the reconnection between injured axons and regenerated neurons. Here, we fabricate a GelMA-MXene hydrogel nerve conduit with electrical conductivity and internal-facing longitudinal grooves and explore its function in SCI repair. It is found that the resultant grooved GelMA-MXene hydrogel could effectively promote the neural stem cells (NSCs) adhesion, directed proliferation and differentiation in vitro. Additionally, when the GelMA-MXene conduit loaded with NSCs (GMN) is implanted into the injured spinal cord site, effective repair capability for the complete transection of SCI was demonstrated. The GMN group shows remarkable nerve recovery and significantly higher BBB scores in comparison to the other groups. Therefore, GMN with the microgroove structure and loaded with NSCs is a promising strategy in treating SCI.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Hidrogeles , Andamios del Tejido/química , Traumatismos de la Médula Espinal/terapia , Regeneración Nerviosa
9.
BMC Cancer ; 21(1): 1209, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772393

RESUMEN

BACKGROUND: To identify candidate key genes and pathways related to resting mast cells in meningioma and the underlying molecular mechanisms of meningioma. METHODS: Gene expression profiles of the used microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. GO and KEGG pathway enrichments of DEGs were analyzed using the ClusterProfiler package in R. The protein-protein interaction network (PPI), and TF-miRNA- mRNA co-expression networks were constructed. Further, the difference in immune infiltration was investigated using the CIBERSORT algorithm. RESULTS: A total of 1499 DEGs were identified between tumor and normal controls. The analysis of the immune cell infiltration landscape showed that the probability of distribution of memory B cells, regulatory T cells (Tregs), and resting mast cells in tumor samples were significantly higher than those in the controls. Moreover, through WGCNA analysis, the module related to resting mast cells contained 158 DEGs, and KEGG pathway analysis revealed that the DEGs were dominant in the TNF signaling pathway, cytokine-cytokine receptor interaction, and IL-17 signaling pathway. Survival analysis of hub genes related to resting mast cells showed that the risk model was constructed based on 9 key genes. The TF-miRNA- mRNA co-regulation network, including MYC-miR-145-5p, TNFAIP3-miR-29c-3p, and TNFAIP3-hsa-miR-335-3p, were obtained. Further, 36 nodes and 197 interactions in the PPI network were identified. CONCLUSION: The results of this study revealed candidate key genes, miRNAs, and pathways related to resting mast cells involved in meningioma development, providing potential therapeutic targets for meningioma treatment.


Asunto(s)
Perfilación de la Expresión Génica , Mastocitos/citología , Neoplasias Meníngeas/genética , Meningioma/genética , Algoritmos , Bases de Datos Genéticas , Humanos , Inmunidad Celular , Interleucina-17/metabolismo , Células B de Memoria/citología , Neoplasias Meníngeas/inmunología , Neoplasias Meníngeas/patología , Meningioma/inmunología , Meningioma/patología , MicroARNs/metabolismo , Mapas de Interacción de Proteínas , Transducción de Señal , Linfocitos T Reguladores/citología
10.
Med Sci Monit ; 27: e929027, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34039946

RESUMEN

BACKGROUND Acupuncture, which has many good effects and few adverse effects, is widely recognized as an alternative therapy for depression in clinical practice. This study aimed to explore the mechanism of acupuncture in antidepressant treatment. MATERIAL AND METHODS In this experiment, Sprague-Dawley rats were randomly divided into 4 groups: control, chronic unpredictable mild stress (CUMS), acupuncture, and fluoxetine groups. The CUMS, acupuncture, and fluoxetine groups were orphaned and subjected to chronic unpredictable stress for 6 weeks, and the acupuncture and fluoxetine groups were treated with their respective intervention in weeks 4-6. The body weight of rats was monitored weekly. After behavioral tests were completed, serum, feces, and hippocampal tissue of rats were collected. RESULTS The results showed that the acupuncture and fluoxetine treatments could alleviate the behavioral changes caused by CUMS. The treatments increased the total distance of rat crossing in the open-field test, prolonged the activity time of the open cross maze in the open arm, and improved the rate of sucrose consumption in the sucrose preference test. In addition, both the decreased level of dopamine (DA) and 5-hydroxytryptamine (5-HT) in serum and hippocampus caused by CUMS were improved after the treatments with acupuncture and fluoxetine, and the decreased expression of brain-derived neurotrophic factor signaling and the astrocytes in the hippocampus caused by CUMS were increased after the treatments with acupuncture and fluoxetine. Acupuncture and fluoxetine also decreased the ß isoform of calmodulin-dependent protein kinase II in the hippocampus, which was increased by CUMS. Furthermore, acupuncture regulated intestinal microbial disorders caused by CUMS, which reduced the relative abundance ratio of Bacteroidetes/Firmicutes in rats. CONCLUSIONS Our experimental results indicate that acupuncture can alleviate depression-like performance in CUMS rats by regulating intestinal microbes and neurotransmitters.


Asunto(s)
Terapia por Acupuntura/métodos , Antidepresivos de Segunda Generación , Conducta Animal/efectos de los fármacos , Depresión/terapia , Fluoxetina , Hipocampo/efectos de los fármacos , Animales , Antidepresivos de Segunda Generación/farmacología , Antidepresivos de Segunda Generación/uso terapéutico , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
11.
J Transl Med ; 18(1): 327, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867782

RESUMEN

BACKGROUND: This study was intended to investigate the genomic landscape of the immune microenvironments of brain metastases in breast cancer. METHODS: Three gene expression profile datasets (GSE76714, GSE125989 and GSE43837) of breast cancer with brain metastases were downloaded from Gene Expression Omnibus (GEO) database. After differential expression analysis, the tumor immune microenvironment and immune cell infiltration were analyzed. Then immune-related genes were identified, followed by function analysis, transcription factor (TF)-miRNA-mRNA co-regulatory network analysis, and survival analysis of metastatic recurrence. RESULTS: The present results showed that the tumor immune microenvironment in brain metastases was immunosuppressed compared with primary caner. Compared with primary cancer samples, the infiltration ratio of plasma cells in brain metastases samples was significantly higher, while the infiltration ratio of macrophages M2 cells in brain metastases samples was significantly lower. Total 42 immune-related genes were identified, such as THY1 and NEU2. CD1B, THY1 and DOCK2 were found to be implicated in the metastatic recurrence of breast cancer. CONCLUSIONS: Targeting macrophages or plasma cells may be new strategies for immunotherapy of breast cancer with brain metastases. THY1 and NEU2 may be potential therapeutic targets for breast cancer with brain metastases, and THY1, CD1B and DOCK2 may serve as potential prognostic markers for improvement of brain metastases survival.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Neoplasias Encefálicas/genética , Mama , Neoplasias de la Mama/genética , Genómica , Humanos , Microambiente Tumoral
12.
Cancer Cell Int ; 20: 419, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32874133

RESUMEN

BACKGROUND AND AIMS: Glioblastoma (GBM) is a common and aggressive primary brain tumor, and the prognosis for GBM patients remains poor. This study aimed to identify the key genes associated with the development of GBM and provide new diagnostic and therapies for GBM. METHODS: Three microarray datasets (GSE111260, GSE103227, and GSE104267) were selected from Gene Expression Omnibus (GEO) database for integrated analysis. The differential expressed genes (DEGs) between GBM and normal tissues were identified. Then, prognosis-related DEGs were screened by survival analysis, followed by functional enrichment analysis. The protein-protein interaction (PPI) network was constructed to explore the hub genes associated with GBM. The mRNA and protein expression levels of hub genes were respectively validated in silico using The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) databases. Subsequently, the small molecule drugs of GBM were predicted by using Connectivity Map (CMAP) database. RESULTS: A total of 78 prognosis-related DEGs were identified, of which10 hub genes with higher degree were obtained by PPI analysis. The mRNA expression and protein expression levels of CETN2, MKI67, ARL13B, and SETDB1 were overexpressed in GBM tissues, while the expression levels of CALN1, ELAVL3, ADCY3, SYN2, SLC12A5, and SOD1 were down-regulated in GBM tissues. Additionally, these genes were significantly associated with the prognosis of GBM. We eventually predicted the 10 most vital small molecule drugs, which potentially imitate or reverse GBM carcinogenic status. Cycloserine and 11-deoxy-16,16-dimethylprostaglandin E2 might be considered as potential therapeutic drugs of GBM. CONCLUSIONS: Our study provided 10 key genes for diagnosis, prognosis, and therapy for GBM. These findings might contribute to a better comprehension of molecular mechanisms of GBM development, and provide new perspective for further GBM research. However, specific regulatory mechanism of these genes needed further elaboration.

13.
Neuropathology ; 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29665111

RESUMEN

This study aimed to investigate the effects of transient receptor potential vanilloid 4 (TRPV4) inhibition on blood-brain barrier (BBB) integrity and the expressions of caveolae structural proteins caveolin-1 and caveolin-2 in rats with focal cerebral ischemia and reperfusion. BBB permeability was assessed by Evans blue extravasation. The mRNA and protein expressions of caveolin-1 and caveolin-2 were determined by RT-PCR, Western blot and immunohistochemistry assays. We found that BBB permeability significantly increased and reaches its peak at 72 h of reperfusion in cerebral ischemia-reperfusion rats and is able to be ameliorated by administration of HC-067047, an antagonist of TRPV4. Additionally, it shows a significant upregulation of caveolin-1 and caveolin-2 expression in cerebral microvessels of ischemic tissue. However, treatment with HC-067047 was shown to downregulate caveolin-1 and caveolin-2 expression during cerebral ischemia-reperfusion. This study demonstrates that inhibition of TRPV4 ameliorates BBB leakage induced by ischemia-reperfusion injury through the downregulation of caveolin-1 and caveolin-2.

14.
Zhongguo Dang Dai Er Ke Za Zhi ; 20(3): 224-229, 2018 Mar.
Artículo en Zh | MEDLINE | ID: mdl-29530124

RESUMEN

OBJECTIVE: To study the effect of Bifidobacterium on the expression of ß-defensin-2 (BD-2) in intestinal tissue of neonatal rats with necrotizing enterocolitis (NEC). METHODS: A total of 40 rats were randomly divided into four groups: normal control, Bifidobacterium control, NEC model, and Bifidobacterium treatment, with 10 rats in each group. A rat model of NEC was induced by hypoxia, cold stimulation, and artificial feeding. The rats in the Bifidobacterium control and Bifidobacterium treatment groups were given Bifidobacterium via the gastric tube after cold stimulation once a day for three consecutive days. The morphological changes of the terminal ileum were observed under a light microscope and the intestinal injury score was determined. Immunohistochemistry and qRT-PCR were used to measure the protein and mRNA expression of BD-2 in the ileal mucosal tissue. RESULTS: The NEC model group had a significantly higher intestinal injury score than the normal control, Bifidobacterium control, and Bifidobacterium treatment groups (P<0.05). The Bifidobacterium treatment group had a significantly higher intestinal injury score than the normal control and Bifidobacterium control groups (P<0.05). The mRNA and protein expression of BD-2 in the normal control group was significantly lower than in the Bifidobacterium control, NEC model, and Bifidobacterium treatment groups (P<0.05). The Bifidobacterium control group had significantly higher mRNA and protein expression of BD-2 than the NEC model and Bifidobacterium treatment groups (P<0.05). The Bifidobacterium treatment group had significantly higher mRNA and protein expression of BD-2 than the NEC model group (P<0.05). CONCLUSIONS: Bifidobacterium can induce the expression of BD-2 in intestinal tissue of rats and reduce inflammatory response by increasing the expression of BD-2. This provides a protective effect on neonatal rats with NEC.


Asunto(s)
Bifidobacterium , Enterocolitis Necrotizante/terapia , Mucosa Intestinal/metabolismo , beta-Defensinas/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Recién Nacido , FN-kappa B/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , beta-Defensinas/análisis , beta-Defensinas/genética
15.
Biotechnol Bioeng ; 111(6): 1071-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24375025

RESUMEN

We have developed selection scheme for directing the evolution of Escherichia coli biotin protein ligase (BPL) via in vitro compartmentalization, and have used this scheme to alter the substrate specificity of the ligase towards the utilization of the biotin analogue desthiobiotin. In this scheme, a peptide substrate (BAP) was conjugated to a DNA library encoding BirA, emulsified such that there was a single template per compartment, and protein variants were transcribed and translated in vitro. Those variants that could efficiently desthiobiotinylate their corresponding peptide:DNA conjugate were subsequently captured and amplified. Following just six rounds of selection and amplification several variants that demonstrated higher activity with desthiobiotin were identified. The best variants from Round 6, BirA6-40 and BirA6-47 , showed 17-fold and 10-fold higher activity, respectively, their abilities to use desthiobiotin as a substrate. While selected enzymes contained a number of substitutions, a single mutation, M157T, proved sufficient to provide much greater activity with desthiobiotin. Further characterization of BirA6-40 and the single substitution variant BirAM157T revealed that they had twoto threefold higher kcat values for desthiobiotin. These variants had also lost much of their ability to utilize biotin, resulting in orthogonal enzymes that in conjunction with streptavidin variants that can utilize desthiobiotin may prove to be of great use in developing additional, robust conjugation handles for a variety of biological and biotechnological applications.


Asunto(s)
Biotina/análogos & derivados , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Evolución Molecular Dirigida , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Sustitución de Aminoácidos , Biotina/metabolismo , Escherichia coli/genética , Cinética , Mutación Missense , Especificidad por Sustrato
16.
Methods ; 60(1): 75-80, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22491026

RESUMEN

In vitro compartmentalization (IVC) is a method to generate numerous, small, aqueous compartments (up to 10(10) compartments per ml) by mixing water, surfactants, and oil. The water phase is surrounded by surfactants and an oil phase, and to a first approximation each water-in-oil compartment is like an artificial cell. By introducing single genes into compartments that are competent for transcription and translation, these cell-like compartments can synthesize RNA protein variants in libraries. Screening or selecting for function has in turn led to schemes for the directed evolution of biomolecules. However, IVC selections can cover larger library sizes, and provide greater control over selection conditions and stringencies. The key issue in designing and executing IVC selections is how to couple genotype and phenotype, and in this review we have organized and presented a variety of mechanisms by which proteins and RNA can attach to or amplify their own templates following emulsification and selection.


Asunto(s)
Emulsiones , Biblioteca de Genes , Proteínas/química , Pliegue de Proteína , Proteínas/síntesis química , Proteínas/genética
17.
Neurol Sci ; 35(5): 687-93, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24277204

RESUMEN

The purpose of this study was to determine whether the antibiotic erythromycin induces tolerance against focal cerebral ischemia, and the possible underlying mechanism including the involvement of neuronal nitric oxide synthase (nNOS) and hypoxia-inducible factor-1α (HIF-1α). In rat focal cerebral ischemia models, we found that erythromycin preconditioning could significantly decrease the cerebral infarct volume and brain edema. Meanwhile, the neurological deficits from day 4 through 7 after surgery were also remarkably decreased after erythromycin preconditioning. Moreover, erythromycin preconditioning induced significantly increased nNOS levels and decreased HIF-1α levels in both mRNA and protein expression. This study for the first time indicated that erythromycin preconditioning could induce focal brain ischemic tolerance and attenuate brain injury of subsequent transient focal cerebral ischemia. The potential mechanism may be due to up-regulation of nNOS, but the HIF-1α system was not involved.


Asunto(s)
Eritromicina/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/fisiopatología , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Edema Encefálico/patología , Edema Encefálico/fisiopatología , Edema Encefálico/prevención & control , Isquemia Encefálica , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Infarto de la Arteria Cerebral Media/patología , Masculino , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas Wistar , Índice de Severidad de la Enfermedad , Regulación hacia Arriba/efectos de los fármacos
18.
Sci Total Environ ; 930: 172716, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38663626

RESUMEN

The global concern regarding the ubiquitous presence of plastics in the environment has led to intensified research on the impact of these materials on wildlife. In the Australian context, marsupials represent a unique and diverse group of mammals, yet little is known about their exposures to plastics. This study aimed to assess the contamination levels of seven common plastics (i.e., polystyrene (PS), polycarbonate (PC), poly-(methyl methacrylate) (PMMA), polypropylene (PP), polyethylene terephthalate (PET), polyethylene (PE), and polyvinyl chloride (PVC)) in both the diet and faeces of kangaroos, wallabies and koalas sampled from a sanctuary in Northeastern Australia. Quantitative analysis was performed by pressurized liquid extraction followed by double-shot microfurnace pyrolysis coupled to gas chromatography mass spectrometry. Interestingly, the analysis of the food and faeces samples revealed the absence of detectable plastic particles; with this preliminary finding suggesting a relatively limited exposure of captive Australian marsupials to plastics. This study contributes valuable insights into the current state of plastic contamination in Australian marsupials, shedding light on the limited exposures and potential risks, and highlighting the need for continued monitoring and conservation efforts. The results underscore the importance of proactive measures to mitigate plastic pollution and protect vulnerable wildlife populations in Australia's unique ecosystems.


Asunto(s)
Marsupiales , Plásticos , Animales , Plásticos/análisis , Australia , Contaminantes Ambientales/análisis , Monitoreo del Ambiente , Heces/química , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis
19.
Adv Mater ; 36(28): e2307896, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744452

RESUMEN

Nerve guidance conduits (NGCs) are considered as promising treatment strategy and frontier trend for peripheral nerve regeneration, while their therapeutic outcomes are limited by the lack of controllable drug delivery and available physicochemical cues. Herein, novel aligned piezoelectric nanofibers derived hydrogel NGCs with ultrasound (US)-triggered electrical stimulation (ES) and controllable drug release for repairing peripheral nerve injury are proposed. The inner layer of the NGCs is the barium titanate piezoelectric nanoparticles (BTNPs)-doped polyvinylidene fluoride-trifluoroethylene [BTNPs/P(VDF-TrFE)] electrospinning nanofibers with improved piezoelectricity and aligned orientation. The outer side of the NGCs is the thermoresponsive poly(N-isopropylacrylamide) hybrid hydrogel with bioactive drug encapsulation. Such NGCs can not only induce neuronal-oriented extension and promote neurite outgrowth with US-triggered wireless ES, but also realize the controllable nerve growth factor release with the hydrogel shrinkage under US-triggered heating. Thus, the NGC can positively accelerate the functional recovery and nerve axonal regeneration of rat models with long sciatic nerve defects. It is believed that the proposed US-responsive aligned piezoelectric nanofibers derived hydrogel NGCs will find important applications in clinic neural tissue engineering.


Asunto(s)
Hidrogeles , Nanofibras , Regeneración Nerviosa , Animales , Regeneración Nerviosa/efectos de los fármacos , Hidrogeles/química , Nanofibras/química , Ratas , Ondas Ultrasónicas , Compuestos de Bario/química , Nervio Ciático/fisiología , Nervio Ciático/efectos de los fármacos , Titanio/química , Polivinilos/química , Andamios del Tejido/química , Resinas Acrílicas/química , Traumatismos de los Nervios Periféricos/terapia , Ratas Sprague-Dawley , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/farmacología , Liberación de Fármacos , Estimulación Eléctrica , Nanopartículas/química , Ingeniería de Tejidos/métodos
20.
Bioact Mater ; 34: 37-50, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173842

RESUMEN

Calcification of cartilage by hydroxyapatite is a hallmark of osteoarthritis and its deposition strongly correlates with the severity of osteoarthritis. However, no effective strategies are available to date on the prevention of hydroxyapatite deposition within the osteoarthritic cartilage and its role in the pathogenesis of this degenerative condition is still controversial. Therefore, the present work aims at uncovering the pathogenic mechanism of intra-cartilaginous hydroxyapatite in osteoarthritis and developing feasible strategies to counter its detrimental effects. With the use of in vitro and in vivo models of osteoarthritis, hydroxyapatite crystallites deposited in the cartilage are found to be phagocytized by resident chondrocytes and processed by the lysosomes of those cells. This results in lysosomal membrane permeabilization (LMP) and release of cathepsin B (CTSB) into the cytosol. The cytosolic CTSB, in turn, activates NOD-like receptor protein-3 (NLRP3) inflammasomes and subsequently instigates chondrocyte pyroptosis. Inhibition of LMP and CTSB in vivo are effective in managing the progression of osteoarthritis. The present work provides a conceptual therapeutic solution for the prevention of osteoarthritis via alleviation of lysosomal destabilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA