Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(18): e2206218, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36670078

RESUMEN

By introducing different contents of Bi adatoms to the surface of monolayer graphene, the carrier concentration and their dynamics have been effectively modulated as probed directly by the time- and angle-resolved photoemission spectroscopy technique. The Bi adatoms are found to assist acoustic phonon scattering events mediated by supercollisions as the disorder effectively relaxes the momentum conservation constraint. A reduced carrier multiplication has been observed, which is related to the shrinking Fermi sea for scattering, as confirmed by time-dependent density functional theory simulation. This work gives insight into hot carrier dynamics in graphene, which is crucial for promoting the application of photoelectric devices.

2.
Opt Express ; 31(13): 21731-21738, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381263

RESUMEN

Ultrafast spin dynamics is crucial for the next-generation spintronic devices towards high-speed data processing. Here, we investigate the ultrafast spin dynamics of Neodymium/Ni80Fe20 (Nd/Py) bilayers by the time-resolved magneto-optical Kerr effect. The effective modulation of spin dynamics at Nd/Py interfaces is realized by an external magnetic field. The effective magnetic damping of Py increases with increasing Nd thickness, and a large spin mixing conductance (∼19.35×1015 cm-2) at Nd/Py interface is obtained, representing the robust spin pumping effect by Nd/Py interface. The tuning effects are suppressed at a high magnetic field due to the reduced antiparallel magnetic moments at Nd/Py interface. Our results contribute to understanding ultrafast spin dynamics and spin transport behavior in high-speed spintronic devices.

3.
Opt Lett ; 48(8): 2054-2057, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37058640

RESUMEN

The dynamic control of magnetization by short laser pulses has recently attracted interest. The transient magnetization at the metallic magnetic interface has been investigated through second-harmonic generation and the time-resolved magneto-optical effect. However, the ultrafast light-driven magneto-optical nonlinearity in ferromagnetic heterostructures for terahertz (THz) radiation remains unclear. Here, we present THz generation from a metallic heterostructure, Pt/CoFeB/Ta, which is ascribed to an ∼6-8% contribution from the magnetization-induced optical rectification and an ∼94-92% contribution from both spin-to-charge current conversion and ultrafast demagnetization. Our results show that THz-emission spectroscopy is a powerful tool to study the picosecond-time-scale nonlinear magneto-optical effect in ferromagnetic heterostructures.

4.
Adv Sci (Weinh) ; : e2406924, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316064

RESUMEN

Current induced spin-orbit torque (SOT) manipulation of magnetization is pivotal in spintronic devices. However, its application for perpendicular magnetic anisotropy magnets, crucial for high-density storage and memory devices, remains nondeterministic and inefficient. Here, a highly efficient approach is demonstrated to generate collinear spin currents by artificial modulation of interfacial symmetry, achieving 100% current-induced field-free SOT switching in CoFeB multilayers with perpendicular magnetization on stepped Al2O3 substrates. This field-free switching is primarily driven by the out-of-plane anti-damping SOT generated by the planar spin Hall effect (PSHE), resulting from reduced interface symmetry due to orientation-determined steps. Microscopic theoretical analysis confirms the presence and significance of PSHE in this process. Notably, this method for generating out-of-plane spin polarization along the collinear direction of the spin-current with artificial modulation of interfacial symmetry, overcomes inherent material symmetry constraints. These findings provide a promising avenue for universal control of spin-orbit torque, addressing challenges associated with low crystal symmetry and highlighting its great potential to advance the development of energy-efficient spintronic devices technology.

5.
Nat Commun ; 15(1): 2410, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499551

RESUMEN

The magnetic type-II Weyl semimetal (MWSM) Co3Sn2S2 has recently been found to host a variety of remarkable phenomena including surface Fermi-arcs, giant anomalous Hall effect, and negative flat band magnetism. However, the dynamic magnetic properties remain relatively unexplored. Here, we investigate the ultrafast spin dynamics of Co3Sn2S2 crystal using time-resolved magneto-optical Kerr effect and reflectivity spectroscopies. We observe a transient magnetization behavior, consisting of spin-flipping dominated fast demagnetization, slow demagnetization due to overall half-metallic electronic structures, and an unexpected ultrafast magnetization enhancement lasting hundreds of picoseconds upon femtosecond laser excitation. By combining temperature-, pump fluence-, and pump polarization-dependent measurements, we unambiguously demonstrate the correlation between the ultrafast magnetization enhancement and the Weyl nodes. Our theoretical modelling suggests that the excited electrons are spin-polarized when relaxing, leading to the enhanced spin-up density of states near the Fermi level and the consequently unusual magnetization enhancement. Our results reveal the unique role of the Weyl properties of Co3Sn2S2 in femtosecond laser-induced spin dynamics.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37874631

RESUMEN

Spin-orbit torque (SOT)-induced magnetization switching in ferrimagnetic materials is promising for application in a new generation of information storage devices. Here, we demonstrate SOT-induced field-free magnetization switching of the perpendicularly magnetized CoTb ferrimagnet layer in the IrMn/CoTb bilayer, in which the in-plane magnetic inversion symmetry is broken by a spontaneous in-plane exchange bias (IEB) established by isothermal crystallization of the IrMn layer. We obtain a significant SOT effective field acting on the CoTb layer and a large effective spin Hall angle in this system, derived by the second harmonic voltage measurement method. Moreover, the IrMn/CoTb bilayer demonstrates multistate magnetic switching behavior with different amplitudes of current pulses at zero field, which can mimic the synaptic weight updates in the neuromorphic network. These findings make the IrMn/CoTb bilayer with spontaneous IEB a promising candidate for potential applications in multilevel storage and neuromorphic computing.

7.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500890

RESUMEN

Due to its high sensitivity and because it does not rely on the magneto-optical response, terahertz (THz) emission spectroscopy has been used as a powerful time-resolved tool for investigating ultrafast demagnetization and spin current dynamics in nanometer-thick ferromagnetic (FM)/heavy metal (HM) heterostructures. Here, by changing the order of the conductive HM coating on the FM nanometer film, the dominant electric dipole contribution to the laser-induced THz radiation can be unraveled from the ultrafast magnetic dipole. Furthermore, to take charge equilibration into account, we separate the femtosecond laser-induced spin-to-charge converted current and the instantaneous discharging current within the illuminated area. The THz emission spectroscopy gives us direct information into the coupled spin and charge dynamics during the first moments of the light-matter interaction. Our results also open up new perspectives to manipulate and optimize the ultrafast charge current for promising high-performance and broadband THz radiation.

8.
Materials (Basel) ; 13(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906365

RESUMEN

Chloride-induced corrosion is the main threat to the service life of concrete structures. In order to better investigate chloride distribution in offshore concrete, this study proposed a new prediction model based on statistical analysis as well as a large body of experimental results collected from various sources. A detailed discussion found that the key influential parameters, such as diffusion coefficient ( D ), surface chloride concentration ( C S ) and penetration depth ( x ) are all highly time-dependent. The exposure zone, water-cement ratio and service time were also considered as relevant factors. The proposed model is then validated by two alternative tests and the results suggest that it is feasible in predicting the chloride content and penetration depth of concrete structures in a marine environment under chloride attack.

9.
Sci Rep ; 8(1): 8074, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29795124

RESUMEN

We have studied the Co2FeAl thin films with different thicknesses epitaxially grown on GaAs (001) by molecular beam epitaxy. The magnetic properties and spin polarization of the films were investigated by in-situ magneto-optic Kerr effect (MOKE) measurement and spin-resolved angle-resolved photoemission spectroscopy (spin-ARPES) at 300 K, respectively. High spin polarization of 58% (±7%) was observed for the film with thickness of 21 unit cells (uc), for the first time. However, when the thickness decreases to 2.5 uc, the spin polarization falls to 29% (±2%) only. This change is also accompanied by a magnetic transition at 4 uc characterized by the MOKE intensity. Above it, the film's magnetization reaches the bulk value of 1000 emu/cm3. Our findings set a lower limit on the thickness of Co2FeAl films, which possesses both high spin polarization and large magnetization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA