Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anim Sci Biotechnol ; 15(1): 3, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225608

RESUMEN

BACKGROUND: Clostridium butyricum (CB) is a probiotic that can regulate intestinal microbial composition and improve meat quality. Rumen protected fat (RPF) has been shown to increase the dietary energy density and provide essential fatty acids. However, it is still unknown whether dietary supplementation with CB and RPF exerts beneficial effects on growth performance and nutritional value of goat meat. This study aimed to investigate the effects of dietary CB and RPF supplementation on growth performance, meat quality, oxidative stability, and meat nutritional value of finishing goats. Thirty-two goats (initial body weight, 20.5 ± 0.82 kg) were used in a completely randomized block design with a 2 RPF supplementation (0 vs. 30 g/d) × 2 CB supplementation (0 vs. 1.0 g/d) factorial treatment arrangement. The experiment included a 14-d adaptation and 70-d data and sample collection period. The goats were fed a diet consisted of 400 g/kg peanut seedling and 600 g/kg corn-based concentrate (dry matter basis). RESULT: Interaction between CB and RPF was rarely observed on the variables measured, except that shear force was reduced (P < 0.05) by adding CB or RPF alone or their combination; the increased intramuscular fat (IMF) content with adding RPF was more pronounced (P < 0.05) with CB than without CB addition. The pH24h (P = 0.009), a* values (P = 0.007), total antioxidant capacity (P = 0.050), glutathione peroxidase activities (P = 0.006), concentrations of 18:3 (P < 0.001), 20:5 (P = 0.003) and total polyunsaturated fatty acids (P = 0.048) were increased, whereas the L* values (P < 0.001), shear force (P = 0.050) and malondialdehyde content (P = 0.044) were decreased by adding CB. Furthermore, CB supplementation increased essential amino acid (P = 0.027), flavor amino acid (P = 0.010) and total amino acid contents (P = 0.024) as well as upregulated the expression of lipoprotein lipase (P = 0.034) and peroxisome proliferator-activated receptor γ (PPARγ) (P = 0.012), and downregulated the expression of stearoyl-CoA desaturase (SCD) (P = 0.034). The RPF supplementation increased dry matter intake (P = 0.005), averaged daily gain (trend, P = 0.058), hot carcass weight (P = 0.046), backfat thickness (P = 0.006), concentrations of 16:0 (P < 0.001) and c9-18:1 (P = 0.002), and decreased the shear force (P < 0.001), isoleucine (P = 0.049) and lysine content (P = 0.003) of meat. In addition, the expressions of acetyl-CoA carboxylase (P = 0.003), fatty acid synthase (P = 0.038), SCD (P < 0.001) and PPARγ (P = 0.022) were upregulated due to RPF supplementation, resulting in higher (P < 0.001) content of IMF. CONCLUSIONS: CB and RPF could be fed to goats for improving the growth performance, carcass traits and meat quality, and promote fat deposition by upregulating the expression of lipogenic genes of Longissimus thoracis muscle.

2.
Front Microbiol ; 13: 960623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212861

RESUMEN

The aim of this study was to investigate the gas production (GP), dry matter disappearance (DMD), fermentation parameters, and rumen microbiota in response to Clostridium butyricum (CB) supplementation in batch culture using a high forage substrate. The doses of CB were supplemented at 0 (Control), 0.5 × 106, 1 × 106, and 2 × 106 CFU/bottle, respectively, at either media pH 6.0 or pH 6.6. The 16S rRNA gene sequencing was used to detect the microbiota of fermentation culture in control and 1 × 106 CFU/bottle after 24 h of incubation. The results showed that the GP (p < 0.001), DMD (p = 0.008), total volatile fatty acid (VFA) concentration (p < 0.001), acetate to propionate ratio (p < 0.001), and NH3-N concentration (p < 0.001) were greater at media pH 6.6 than pH 6.0. Furthermore, the linearly increased DMD (pH 6.0, p = 0.002; pH 6.6, p < 0.001) and quadratically increased butyrate proportion (pH 6.0, p = 0.076; pH 6.6, p < 0.053) and NH3-N concentration (pH 6.0, p = 0.003; pH 6.6, p = 0.014) were observed with increasing doses of CB. The Alpha diversity indexes of OTU number and Chao1 were higher (p = 0.045) at media pH 6.6 than pH 6.0, but they were not affected by CB supplementation. The PCoA analysis (unweighted uniFrac) demonstrated that the clustering of the bacterial microbiota of control and CB were distinctly separated from each other at media pH 6.0. At the phylum level, the abundance of Bacteroidota (p < 0.001) decreased, whereas that of Firmicutes (p = 0.026) increased when the media pH was elevated from 6.0 to 6.6. Supplementation of CB increased relative abundances of Rikenellaceae_RC9_gut_group (p = 0.002), Christensenellaceae_R-7_group (p < 0.001), and NK4A214_group (p = 0.002) at genus level. Interactions between media pH and CB addition were observed for bacteria at both phylum and genus levels. These results indicated that increasing the media pH level and CB supplementation increased in vitro rumen digestibility, and altered the ruminal fermentation pattern (by media pH) and microbiota.

3.
J Agric Food Chem ; 70(42): 13719-13729, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36222227

RESUMEN

Understanding more precisely the mechanisms controlling the metabolism of fatty acid in the mammary gland of dairy goats is essential for future improvements in milk quality. Particularly since recent data have underscored a key role for circular RNAs (circRNAs) in the mammary gland function, high-throughput sequencing technology was used to identify expression levels of circRNAs in the mammary tissue of dairy goats during early and peak lactation in the present study. Compared with early lactation, results demonstrated that the expression level of circ007071 during peak lactation was 12.02-fold up-regulated. Subsequent studies in goat mammary epithelial cells (GMECs) revealed that circ007071 stimulated the synthesis of triglycerides (TAG) and cholesterol, as well as increased the content of saturated fatty acids (C16:0 and C18:0). More importantly, using a double luciferase reporting system allowed us to detect the circ007071 sequence at a binding site of miR-103-5p, indicating that it targeted this miRNA. Overexpression of circ007071 significantly decreased the abundance of miR-103-5p and led to inhibition of TAG synthesis. In contrast, the abundance of peroxisome proliferator-activated receptor γ (PPARγ), a target gene of miR-103-5p, was reinforced with the overexpression of circ007071. Thus, we conclude that one key function of circ007071 in the regulation of milk fat synthesis is to attenuate the inhibitory effect of miR-103-5p on PPARγ via direct interactions with miRNA. As a result, the process of TAG and saturated fatty acid is able to proceed.


Asunto(s)
MicroARNs , PPAR gamma , Femenino , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Glándulas Mamarias Animales/metabolismo , ARN Circular , Cabras/genética , Cabras/metabolismo , Lactancia , Ácidos Grasos/metabolismo , Células Epiteliales/metabolismo , Triglicéridos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ácidos Grasos Insaturados/metabolismo , Colesterol/metabolismo , Regulación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA