Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 45(9): e2300704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38346444

RESUMEN

The isothermal melting behaviors of ultra-high molecular weight polyethylene (UHMWPE) with different entangled states (i.e., nascent and melt-crystallized samples) are studied. For two kinds of UHMWPE samples, the result shows that the relative content of survived crystals (Xs) exponentially decreases with time and reaches a constant value. It is suggested that such a melting behavior is related to the observed nonlinear growth of crystals induced by the kinetically rejected entanglements accumulated at the growth front. Additionally, the exponential decay of Xs with time provides a characteristic melting time (τ) for the melting process. Compared to the melt-crystallized UHMWPE, the τ value of nascent UHMWPE is generally longer even in a higher temperature range, which is mainly because the former has a larger entanglement density difference. Furthermore, these observations demonstrate that UHMWPEs with different entangled states have an analogous melting mechanism since they exhibit a similar melting activation energy (≈1300 kJ mol-1).


Asunto(s)
Cristalización , Polietilenos , Cinética , Polietilenos/química , Temperatura de Transición , Temperatura
2.
Soft Matter ; 15(14): 2981-2989, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30912567

RESUMEN

A wide range of possible applications in sensors and optoelectronic devices have focused considerable attention on porous membranes made of semi-conducting polymers. In this study, porous films of poly(3-hexylthiophene) (P3HT) were conveniently constructed through spin-coating of solutions of a blend of P3HT and polyethylene glycol (PEG). Pores were formed by phase separation driven simultaneously by incompatibility and crystallization. The influence of the polymer concentration (c), molecular weight (Mn) and spin-coating temperature (Tsp) on the pore size and structure was investigated. With increasing c from 0.5 to 5.0 wt%, the pore diameter (d) varied from ≈1.3 µm to ≈38 µm. Similarly, we observed a substantial increase of d with increasing Mn of PEG, while changing Mn of P3HT did not affect d. Micron- and nano-scale pores coexisted in porous P3HT films. While incompatibility of P3HT and PEG caused the formation of nano-pores, micron-scale pores resulted from crystallization in the PEG-rich domains by forcing PEG molecules to diffuse from the surrounding PEG-P3HT blend region to the crystal growth front.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA