RESUMEN
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia. It is unknown why fibrosis in IPF distributes in the peripheral or named sub-pleural area. Migration of pleural mesothelial cells (PMC) should contribute to sub-pleural fibrosis. Calpain is known to be involved in cell migration, but the role of calpain in PMC migration has not been investigated. In this study, we found that PMCs migrated into lung parenchyma in patients with IPF. Then using Wt1tm1(EGFP/Cre)Wtp /J knock-in mice, we observed PMC migration into lung parenchyma in bleomycin-induced pleural fibrosis models, and calpain inhibitor attenuated pulmonary fibrosis with prevention of PMC migration. In vitro studies revealed that bleomycin and transforming growth factor-ß1 increased calpain activity in PMCs, and activated calpain-mediated focal adhesion (FA) turnover as well as cell migration, cell proliferation, and collagen-I synthesis. Furthermore, we determined that calpain cleaved FA kinase in both C-terminal and N-terminal regions, which mediated FA turnover. Lastly, the data revealed that activated calpain was also involved in phosphorylation of cofilin-1, and p-cofilin-1 induced PMC migration. Taken together, this study provides evidence that calpain mediates PMC migration into lung parenchyma to promote sub-pleural fibrosis in IPF.
Asunto(s)
Fibrosis Pulmonar Idiopática , Factores Despolimerizantes de la Actina/metabolismo , Animales , Bleomicina/farmacología , Calpaína/metabolismo , Movimiento Celular , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Ratones , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
The distribution of fibrosis in idiopathic pulmonary fibrosis (IPF) is subpleural with basal predominance. Alveolar epithelial cell was considered as the key cell in the initial phase of IPF. However, the idea of activation and damage of alveolar epithelial cells is very difficult to explain why fibrosis distributes in the subpleural area. In this study, human pleural mesothelial cell (PMC) line and primary rat PMC was used as in vitro model. Intraperitoneal injection of bleomycin was used for making a pulmonary fibrosis model. The integrity of cultured monolayer PMCs was determined by transepithelial electric resistance (TEER). Pleural permeability was estimated by measuring paracellular transport of fluorescein isothiocyanate (FITC)-conjugated dextran. Changes in lung tissue of patients with IPF were analyzed by Masson's and immunofluorescence staining. We found bleomycin induced PMCs damage and increased PMCs permeability; increased PMCs permeability aggravated bleomycin-induced subpleural inflammation and pulmonary fibrosis. Moreover, bleomycin was found to activate VEGF/Src signaling which increased PMCs permeability. In vivo, inhibition of VEGF/Src signaling prevented bleomycin-induced subpleural pulmonary fibrosis. At last, activation of VEGF/Src signaling was confirmed in subpleural area in patients with IPF. Taken together, our findings indicate that VEGF/Src signaling mediated pleural barrier damage and increased permeability which contributes to subpleural pulmonary fibrosis.
Asunto(s)
Fibrosis Pulmonar Idiopática/patología , Permeabilidad/efectos de los fármacos , Pleura/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Bleomicina/farmacología , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/patología , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pleura/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacosRESUMEN
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrosing interstitial lung disease with limited therapeutic options and a median survival of 3 years after diagnosis. Dysregulated epithelial regeneration is key event involved in initiating and sustaining IPF. The type II alveolar epithelial cells (AECIIs) play a crucial role for epithelial regeneration and stabilisation of alveoli. Loss of cell apical-basal polarity contributes to fibrosis. AECII has apical-basal polarity, but it is poorly understood whether AECII apical-basal polarity loss is involved in fibrosis. Bleomycin is a traditional inducer of pulmonary fibrosis. Here firstly we observed that bleomycin induced apical-basal polarity loss in cultured AECIIs. Next, cell polarity proteins lethal (2) giant larvae 1 (Lgl1), PAR-3A, aPKC and PAR-6B were investigated. We found bleomycin induced increases of Lgl1 protein and decreases of PAR-3A protein, and bleomycin-induced PAR-3A depression was mediated by increased-Lgl1. Then Lgl1 siRNA was transfected into AECIIs. Lgl1 siRNA prevented apical-basal polarity loss in bleomycin-treated AECIIs. At last, Lgl1-conditional knockout mice were applied in making animal models. Bleomycin induced pulmonary fibrosis, but this was attenuated in Lgl1-conditional knockout mice. Together, these data indicated that bleomycin mediated AECII apical-basal polarity loss which contributed to experimental pulmonary fibrosis. Inhibition of Lgl1 should be a potential therapeutic strategy for the disease.
Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Bleomicina/farmacología , Polaridad Celular/efectos de los fármacos , Glicoproteínas/genética , Fibrosis Pulmonar/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Polaridad Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratones Noqueados , Cultivo Primario de Células , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/prevención & control , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de SeñalRESUMEN
BACKGROUND/AIMS: Newly identified IL-10-producing regulatory B cells (Bregs) have been shown to play an important role in the suppression of immune responses. Chronic immune activation participates in the pathogenesis of dilated cardiomyopathy (DCM) but whether Bregs are involved in its development remains unclear. We aimed to investigate the circulating frequency and function of Bregs in DCM. METHODS: In total, 35 DCM patients (20 men and 15 women) and 44 healthy controls (23 men and 21 women) were included in the experiment, and the frequency of Bregs was detected using flow cytometry. RESULTS: According to our results, the frequency of circulating IL-10-producing Bregs was significantly lower in DCM patients compared with healthy controls. Furthermore, the CD24hiCD27+ B cell subset in which IL-10-producing Bregs were mainly enriched from DCM patients showed impaired IL-10 expression and a decreased ability to suppress the TNF-α production of CD4+CD25- Tconv cells and to maintain Tregs differentiation. Correlation analysis showed that the frequency of IL-10-producing Bregs and the suppressive function of CD24hiCD27+ B cells were positively correlated with left ventricular ejection fraction and negatively correlated with NT-proBNP in DCM patients. CONCLUSIONS: In conclusion, the reduced frequency and impaired functions suggest a potential role of Bregs in the development of DCM.
Asunto(s)
Linfocitos B Reguladores/metabolismo , Cardiomiopatía Dilatada/patología , Adulto , Anciano , Linfocitos B Reguladores/citología , Antígeno CD24/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Cardiomiopatía Dilatada/inmunología , Cardiomiopatía Dilatada/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Proliferación Celular , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Interleucina-10/metabolismo , Leucocitos Mononucleares/citología , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico/análisis , Péptido Natriurético Encefálico/metabolismo , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Pleural fibrosis is defined as an excessive deposition of extracellular matrix (ECM) components that results in destruction of the normal pleural tissue architecture. It can result from diverse inflammatory conditions, especially tuberculous pleurisy. Pleural mesothelial cells (PMCs) play a pivotal role in pleural fibrosis. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodeling. However, the role of calpain in pleural fibrosis remains unknown. In the present study, we found that tuberculous pleural effusion (TPE) induced calpain activation in PMCs and that inhibition of calpain prevented TPE-induced collagen-I synthesis and cell proliferation of PMCs. Moreover, our data revealed that the levels of angiotensin (ANG)-converting enzyme (ACE) were significantly higher in pleural fluid of patients with TPE than those with malignant pleural effusion, and ACE-ANG II in TPE resulted in activation of calpain and subsequent triggering of the phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB signaling pathway in PMCs. Finally, calpain activation in PMCs and collagen depositions were confirmed in pleural biopsy specimens from patients with tuberculous pleurisy. Together, these studies demonstrated that calpain is activated by renin-angiotensin system in pleural fibrosis and mediates TPE-induced collagen-I synthesis and proliferation of PMCs via the PI3K/Akt/NF-κB signaling pathway. Calpain in PMCs might be a novel target for intervention in tuberculous pleural fibrosis.
Asunto(s)
Calpaína/metabolismo , Tuberculosis Pleural/enzimología , Adolescente , Adulto , Anciano , Angiotensina II/fisiología , Proliferación Celular , Células Cultivadas , Colágeno Tipo I/biosíntesis , Activación Enzimática , Epitelio/patología , Femenino , Fibrosis , Humanos , Masculino , Persona de Mediana Edad , Pleura/microbiología , Pleura/patología , Derrame Pleural Maligno/enzimología , Sistema Renina-Angiotensina , Transducción de Señal , Tuberculosis Pleural/patología , Adulto JovenRESUMEN
Regulatory T-cells (Tregs) are generally regarded as key immunomodulators that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. However, its role in myocardial ischaemia/reperfusion injury (MIRI) remains unknown. The purpose of the present study was to determine whether Tregs exert a beneficial effect on mouse MIRI. We examined the role of Tregs in murine MIRI by depletion using 'depletion of regulatory T-cell' (DEREG) mice and adoptive transfer using Forkhead box P3 (Foxp3)-GFP knockin mice and the mechanisms of cardio protection were further studied in vivo and in vitro. Tregs rapidly accumulated in murine hearts following MIRI. Selective depletion of Tregs in the DEREG mouse model resulted in aggravated MIRI. In contrast, the adoptive transfer of in vitro-activated Tregs suppressed MIRI, whereas freshly isolated Tregs had no effect. Mechanistically, activated Treg-mediated protection against MIRI was not abrogated by interleukin (IL)-10 or transforming growth factor (TGF)-ß1 inhibition but was impaired by the genetic deletion of cluster of differentiation 39 (CD39). Moreover, adoptive transfer of in vitro-activated Tregs attenuated cardiomyocyte apoptosis, activated a pro-survival pathway involving Akt and extracellular-signal-regulated kinase (ERK) and inhibited neutrophil infiltration, which was compromised by CD39 deficiency. Finally, the peripheral blood mononuclear cells of acute myocardial infarction (AMI) patients after primary percutaneous coronary intervention (PCI) revealed a decrease in CD4+CD25+CD127low Tregs and a relative increase in CD39+ cells within the Treg population. In conclusion, our data validated a protective role for Tregs in MIRI. Moreover, in vitro-activated Tregs ameliorated MIRI via a CD39-dependent mechanism, representing a putative therapeutic strategy.
Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Inmunoterapia/métodos , Activación de Linfocitos/inmunología , Daño por Reperfusión Miocárdica/inmunología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo/métodos , Análisis de Varianza , Animales , Factores de Transcripción Forkhead/genética , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/metabolismoRESUMEN
Mitochondria play important roles in cell fate, calcium signaling, mitophagy, and the signaling through reactive oxygen species (ROS). Recently, mitochondria are considered as a signaling organelle in the cell and communicate with other organelles to constitute the mitochondrial information processing system (MIPS) that transduce input-to-output biological information. The success in immunotherapy, a concept of systemic therapy, has been proved to be dependent on paracrine interactions within the tumor microenvironment (TME) and distant organs including microbiota and immune components. We will adopt a broader view from the concept of TME to tumor micro- and macroenvironment (TM 2 E) or tumor-organ ecosystem (TOE). In this review, we will discuss the role of mitochondrial signaling by mitochondrial ROS, calcium flux, metabolites, mtDNA, vesicle transportation, and mitochondria-derived peptide in the TME and TOE, in particular immune regulation and effective cancer immunotherapy.
RESUMEN
Background: The relationship between peripheral immune cells and immunoglobulin A nephropathy (IgAN) is widely known; however, causal evidence of this link is lacking. Here, we aimed to determine the causal effect of peripheral immune cells, specifically total white blood cells, lymphocytes, monocytes, basophils, eosinophils, and neutrophils, as well as lymphocyte subset traits, on the IgAN risk using a Mendelian randomization (MR) analysis. Methods: The inverse-variance weighted (IVW) method was used for the primary analysis. We applied three complementary methods, including the weighted median, MR-Egger regression, and MR-PRESSO, to detect and correct for the effect of horizontal pleiotropy. Additionally, we performed a multivariable MR (MVMR) analysis, adjusting for the effects of C-reactive protein (CRP) levels. The roles of specific lymphocyte subtypes and their significance have garnered interest. Bidirectional two-sample MR analysis was performed to test the potential causal relationships between immune traits, including median fluorescence intensities (MFIs) and the relative cell count (AC), and IgAN. Results: The IVW-MR analysis suggested a potential causal relationship between lymphocyte counts and IgAN in Europe (OR per 1-SD increase: 1.43, 95% CI: 1.08-1.88, P = 0.0123). The risk effect of lymphocytes remained even after adjusting for CRP levels using the MVMR method (OR per 1-SD increase: 1.44, 95% CI: 1.05-1.96, P = 0.0210). The other sensitivity analyses showed a consistent trend. The largest GWAS published to date was used for peripheral blood immunophenotyping to explore the potential causal relationship between peripheral immune cell subsets and IgAN. Six AC-IgAN and 14 MFI-IgAN pairs that reached statistical significance (P < 0.05) were detected. Notably, CD3, expressed in eight subsets of T cells, consistently showed a positive correlation with IgAN. The bidirectional MR analysis did not reveal any evidence of reverse causality. According to the sensitivity analysis, horizontal pleiotropy was unlikely to distort the causal estimates. Conclusions: Genetically determined high lymphocyte counts were associated with IgAN, supporting that high lymphocyte counts is causal risk factor for IgAN.
Asunto(s)
Glomerulonefritis por IGA , Análisis de la Aleatorización Mendeliana , Humanos , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/inmunología , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido SimpleRESUMEN
Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic disease with high mortality. Currently, pirfenidone and nintedanib are the only approved drugs for IPF by the U.S. Food and Drug Administration (FDA), but their efficacy is limited. The activation of multiple phosphotyrosine (pY) mediated signaling pathways underlying the pathological mechanism of IPF has been explored. A Src homology-2 (SH2) superbinder, which contains mutations of three amino acids (AAs) of natural SH2 domain has been shown to be able to block phosphotyrosine (pY) pathway. Therefore, we aimed to introduce SH2 superbinder into the treatment of IPF. Methods: We analyzed the database of IPF patients and examined pY levels in lung tissues from IPF patients. In primary lung fibroblasts obtained from IPF patient as well as bleomycin (BLM) treated mice, the cell proliferation, migration and differentiation associated with pY were investigated and the anti-fibrotic effect of SH2 superbinder was also tested. In vivo, we further verified the safety and effectiveness of SH2 superbinder in multiple BLM mice models. We also compared the anti-fibrotic effect and side-effect of SH2 superbinder and nintedanib in vivo. Results: The data showed that the cytokines and growth factors pathways which directly correlated to pY levels were significantly enriched in IPF. High pY levels were found to induce abnormal proliferation, migration and differentiation of lung fibroblasts. SH2 superbinder blocked pY-mediated signaling pathways and suppress pulmonary fibrosis by targeting high pY levels in fibroblasts. SH2 superbinder had better therapeutic effect and less side-effect compare to nintedanib in vivo. Conclusions: SH2 superbinder had significant anti-fibrotic effects both in vitro and in vivo, which could be used as a promising therapy for IPF.
Asunto(s)
Fibrosis Pulmonar Idiopática , Animales , Bleomicina/farmacología , Proliferación Celular , Fibroblastos/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/metabolismo , Ratones , Fosfotirosina/química , Fosfotirosina/metabolismo , Fosfotirosina/farmacologíaRESUMEN
Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic, progressive and fibrosing interstitial pneumonia of unknown cause. The main feature of IPF is a heterogeneous appearance with areas of sub-pleural fibrosis. However, the mechanism of sub-pleural fibrosis was poorly understood. In this study, our in vivo study revealed that pleural mesothelial cells (PMCs) migrated into lung parenchyma and localized alongside lung fibroblasts in sub-pleural area in mouse pulmonary fibrosis. Our in vitro study displayed that cultured-PMCs-medium induced lung fibroblasts transforming into myofibroblast, cultured-fibroblasts-medium promoted mesothelial-mesenchymal transition of PMCs. Furthermore, these changes in lung fibroblasts and PMCs were prevented by blocking TGF-ß1/Smad2/3 signaling with SB431542. TGF-ß1 neutralized antibody attenuated bleomycin-induced pulmonary fibrosis. Similar to TGF-ß1/Smad2/3 signaling, wnt/ß-catenin signaling was also activated in the process of PMCs crosstalk with lung fibroblasts. Moreover, inhibition of CD147 attenuated cultured-PMCs-medium induced collagen-I synthesis in lung fibroblasts. Blocking CD147 signaling also prevented bleomycin-induced pulmonary fibrosis. Our data indicated that crosstalk between PMC and lung fibroblast contributed to sub-pleural pulmonary fibrosis. TGF-ß1, Wnt/ß-catenin and CD147 signaling was involved in the underling mechanism.
Asunto(s)
Epitelio/efectos de los fármacos , Pulmón/metabolismo , Pleura/efectos de los fármacos , Fibrosis Pulmonar/genética , Animales , Benzamidas/farmacología , Movimiento Celular/genética , Dioxoles/farmacología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Epitelio/patología , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Pleura/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Transducción de Señal/efectos de los fármacos , Proteína Smad2/genética , Factor de Crecimiento Transformador beta1/genéticaRESUMEN
BACKGROUND: Pleural fibrosis is defined as excessive depositions of matrix components that result in pleural tissue architecture destruction and dysfunction. In severe cases, the progression of pleural fibrosis leads to lung entrapment, resulting in dyspnea and respiratory failure. However, the mechanism of pleural fibrosis is poorly understood. METHODS: miR-4739 levels were detected by miRNA array and real-time PCR. Real-time PCR, western blotting and immunofluorescence were used to identify the expression profile of indicators related to fibrosis. Target gene of miR-4739 and promoter activity assay was measured by using dual-luciferase reporter assay system. In vivo, pleural fibrosis was evaluated by Masson staining and miR-4739 level was detected by In situ hybridization histochemistry. FINDINGS: We found that bleomycin induced up-regulation of miR-4739 in pleural mesothelial cells (PMCs). Over-regulated miR-4739 mediated mesothelial-mesenchymal transition and increased collagen-I synthesis in PMCs. Investigation on the clinical specimens revealed that high levels of miR-4739 and low levels of bone morphogenetic protein 7 (BMP-7) associated with pleural fibrosis in patients. Then we next identified that miR-4739 targeted and down-regulated BMP-7 which further resulted in unbalance between Smad1/5/9 and Smad2/3 signaling. Lastly, in vivo studies revealed that miR-4739 over-expression induced pleural fibrosis, and exogenous BMP-7 prevented pleural fibrosis in mice. INTERPRETATION: Our data indicated that miR-4739 targets BMP-7 which mediates pleural fibrosis. The miR-4739/BMP-7 axis is a promising therapeutic target for the disease. FUND: The National Natural Science Foundation of China.
Asunto(s)
Proteína Morfogenética Ósea 7/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3' , Animales , Antagomirs/metabolismo , Bleomicina/farmacología , Proteína Morfogenética Ósea 7/química , Proteína Morfogenética Ósea 7/genética , Colágeno Tipo I/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibrosis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Pleura/citología , Regiones Promotoras Genéticas , Ratas , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease that typically leads to respiratory failure and death. The cause of IPF is poorly understood. Although several environmental and occupational factors are considered as risk factors in IPF, cigarette smoking seems to be the most strongly associated risk factor. Here firstly, we treated mice with cigarette (16 mg tar, 1.0 mg nicotine in each cigarette) smoking and tried to explore the role of cigarette smoking in pulmonary fibrosis. Mice were continuously subjected to smoke for about 1 h each day (12 cigarettes per day, 5 days per week) during 40 days. Bleomycin was administrated by intraperitoneal injection at a dose of 40 mg/kg on days 1, 5, 8, 11 and 15. We found bleomycin induced pulmonary fibrosis in mice, and cigarette smoking augmented bleomycin-induced fibrosis reflected by both in fibrotic area and percentages of collagen in the lungs. Then we prepared and employed cigarette smoke extract (CSE) in cell models and found that CSE could induce the activation of p-Smad2/3 and p-Akt, as well as collagen-I synthesis and cell proliferation in lung fibroblasts and pleural mesothelial cells (PMCs). TGF-ß1 signaling mediated CSE-induced PMCs migration. Moreover, in vitro studies revealed that CSE had superimposed effect on bleomycin-induced activation of TGF-ß-Smad2/3 and -Akt signaling. TGF-ß-Smad2/3 and -Akt signaling were further augmented by cigarette smoking in the lung of bleomycin-treated mice. Taken together, these findings represent the first evidence that cigarette smoking aggravated bleomycin-induced pulmonary fibrosis via TGF-ß1 signaling.
Asunto(s)
Bleomicina/toxicidad , Fumar Cigarrillos/efectos adversos , Fibrosis Pulmonar Idiopática/patología , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Oncogénica v-akt/genética , Proteína Oncogénica v-akt/metabolismo , Factores de Riesgo , Transducción de Señal , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
The thymic stromal lymphopoietin (TSLP)/TSLP receptor (TSLPR) axis is involved in multiple inflammatory immune diseases, including coronary artery disease (CAD). To explore the causal relationship between this axis and CAD, we performed a three-stage case-control association analysis with 3,628 CAD cases and 3,776 controls using common variants in the genes TSLP, interleukin 7 receptor (IL7R), and TSLPR. Three common variants in the TSLP/TSLPR axis were significantly associated with CAD in a Chinese Han population [rs3806933T in TSLP, Padj = 4.35 × 10-5, odds ratio (OR) = 1.18; rs6897932T in IL7R, Padj = 1.13 × 10-7, OR = 1.31; g.19646A>GA in TSLPR, Padj = 2.04 × 10-6, OR = 1.20]. Reporter gene analysis demonstrated that rs3806933 and rs6897932 could influence TSLP and IL7R expression, respectively. Furthermore, the "T" allele of rs3806933 might increase plasma TSLP levels (R2 = 0.175, P < 0.01). In a stepwise procedure, the risk for CAD increased by nearly fivefold compared with the maximum effect of any single variant (Padj = 6.99 × 10-4, OR = 4.85). In addition, the epistatic interaction between TSLP and IL33 produced a nearly threefold increase in the risk of CAD in the combined model of rs3806933TT-rs7025417TT (Padj = 3.67 × 10-4, OR = 2.98). Our study illustrates that the TSLP/TSLPR axis might be involved in the pathogenesis of CAD through upregulation of mRNA or protein expression of the referenced genes and might have additive effects on the CAD risk when combined with IL-33 signaling.