Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 180: 106090, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934795

RESUMEN

Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Envejecimiento Cognitivo , Humanos , Senescencia Celular , Lesiones Traumáticas del Encéfalo/complicaciones , Inflamación
2.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628182

RESUMEN

Hemoglobin (Hb) is the oxygen transport protein in erythrocytes. In blood, Hb is a tetramer consisting of two Hb-alpha (Hb-α) chains and two Hb-beta (Hb-ß) chains. A number of studies have also shown that Hb-α is also expressed in neurons in both the rodent and human brain. In the current study, we examined for age-related regulation of neuronal Hb-α and hypoxia in the hippocampus and cerebral cortex of intact male and female mice. In addition, to confirm the role and functions of neuronal Hb-α, we also utilized lentivirus CRISPR interference-based Hb-α knockdown (Hb-α CRISPRi KD) in the non-ischemic and ischemic mouse hippocampus and examined the effect on neuronal oxygenation, as well as induction of hypoxia-inducible factor-1α (HIF-1α) and its downstream pro-apoptotic factors, PUMA and NOXA, and on neuronal survival and neurodegeneration. The results of the study revealed an age-related decrease in neuronal Hb-α levels and correlated increase in hypoxia in the hippocampus and cortex of intact male and female mice. Sex differences were observed with males having higher neuronal Hb-α levels than females in all brain regions at all ages. In vivo Hb-α CRISPRi KD in the mouse hippocampus resulted in increased hypoxia and elevated levels of HIF-1α, PUMA and NOXA in the non-ischemic and ischemic mouse hippocampus, effects that were correlated with a significant decrease in neuronal survival and increased neurodegeneration. As a whole, these findings indicate that neuronal Hb-α decreases with age in mice and has an important role in regulating neuronal oxygenation and neuroprotection.


Asunto(s)
Hemoglobinas , Neuronas , Animales , Corteza Cerebral/metabolismo , Femenino , Hemoglobinas/metabolismo , Hipocampo/metabolismo , Hipoxia/metabolismo , Masculino , Ratones , Neuronas/metabolismo
3.
J Neurosci ; 40(50): 9751-9771, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33158962

RESUMEN

Expression of the 17ß-estradiol (E2) synthesis enzyme aromatase is highly upregulated in astrocytes following brain injury. However, the precise role of astrocyte-derived E2 in the injured brain remains unclear. In the current study, we generated a glial fibrillary acidic protein (GFAP) promoter-driven aromatase knock-out (GFAP-ARO-KO) mouse model to deplete astrocyte-derived E2 in the brain and determine its roles after global cerebral ischemia (GCI) in male and female mice. GFAP-ARO-KO mice were viable and fertile, with normal gross brain structure, normal morphology, intensity and distribution of astrocytes, normal aromatase expression in neurons, and normal cognitive function basally. In contrast, after GCI, GFAP-ARO-KO mice: (1) lacked the normal elevation of astrocyte aromatase and hippocampal E2 levels; (2) had significantly attenuated reactive astrogliosis; and (3) displayed enhanced neuronal damage, microglia activation, and cognitive deficits. RNA-sequencing (RNA-seq) analysis revealed that the ischemic GFAP-ARO-KO mouse hippocampus failed to upregulate the "A2" panel of reactive astrocyte genes. In addition, the JAK-STAT3 pathway, which is critical for the induction of reactive astrogliosis, was significantly downregulated in the GFAP-ARO-KO hippocampus following GCI. Finally, exogenous E2 administration fully rescued the compromised JAK-STAT3 pathway and reactive astrogliosis, and reversed the enhanced neuronal damage and microglial activation in the GFAP-ARO-KO mice after GCI, suggesting that the defects in the KO mice are because of a loss of E2 rather than an increase in precursor androgens. In conclusion, the current study provides novel genetic evidence for a beneficial role of astrocyte-derived E2 in reactive astrogliosis, microglial activation, and neuroprotection following an ischemic injury to the brain.SIGNIFICANCE STATEMENT Following cerebral ischemia, reactive astrocytes express the enzyme aromatase and produce 17ß-estradiol (E2), although the precise role of astrocyte-derived E2 is poorly understood. In this study, we generated a glial fibrillary acidic protein (GFAP) promoter-driven aromatase knock-out (GFAP-ARO-KO) mouse to deplete astrocyte-derived E2 and elucidate its roles after global cerebral ischemia (GCI). The GFAP-ARO-KO mice exhibited significantly attenuated reactive astrogliosis, as well as enhanced microglial activation, neuronal damage, and cognitive dysfunction after GCI. Transcriptome analysis further revealed that astrocyte-derived E2 was critical for the induction of the JAK-STAT3 signaling pathway, as well as the A2 reactive astrocyte phenotype after ischemia. Collectively, these findings indicate that astrocyte-derived E2 has a key role in the regulation of reactive astrogliosis, microglial activation, and neuroprotection after cerebral ischemia.


Asunto(s)
Aromatasa/genética , Astrocitos/metabolismo , Isquemia Encefálica/metabolismo , Estradiol/metabolismo , Gliosis/metabolismo , Hipocampo/metabolismo , Animales , Aromatasa/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Condicionamiento Clásico/fisiología , Modelos Animales de Enfermedad , Estradiol/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/genética , Gliosis/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuroprotección/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
4.
J Neurosci ; 40(38): 7355-7374, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817249

RESUMEN

17ß-Estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but the functions of neuron-derived E2 in the ischemic brain are unclear. Here, we used a forebrain neuron-specific aromatase KO (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain and determine its roles after global cerebral ischemia. We demonstrated that ovariectomized female FBN-ARO-KO mice exhibited significantly attenuated astrocyte activation, astrocytic aromatization, and decreased hippocampal E2 levels compared with FLOX mice. Furthermore, FBN-ARO-KO mice had exacerbated neuronal damage and worse cognitive dysfunction after global cerebral ischemia. Similar results were observed in intact male mice. RNA-seq analysis revealed alterations in pathways and genes associated with astrocyte activation, neuroinflammation, and oxidative stress in FBN-ARO-KO mice. The compromised astrocyte activation in FBN-ARO-KO mice was associated with robust downregulation of the astrocyte-derived neurotrophic factors, BDNF and IGF-1, as well as the astrocytic glutamate transporter, GLT-1. Νeuronal FGF2, which acts in a paracrine manner to suppress astrocyte activation, was increased in FBN-ARO-KO neurons. Interestingly, blocking FGF2 signaling by central injection of FGFR3-neutralizing antibody was able to reverse the diminishment in neuroprotective astrocyte reactivity, and attenuate neuronal damage in FBN-ARO-KO mice. Moreover, in vivo E2 replacement suppressed FGF2 signaling and rescued the compromised reactive astrogliosis and cognitive deficits. Collectively, our data provide novel genetic evidence for a beneficial role of neuron-derived E2 in astrocyte activation, neuroprotection, and cognitive preservation following ischemic injury to the brain.SIGNIFICANCE STATEMENT Following cerebral ischemia, astrocytes become highly reactive and can exert neuroprotection through the release of neurotrophic factors and clearance of neurotoxic glutamate. The current study advances our understanding of this process by demonstrating that neuron-derived 17ß-estradiol (E2) is neuroprotective and critical for induction of reactive astrocytes and their ability to produce astrocyte-derived neurotrophic factors, BDNF and IGF-1, and the glutamate transporter, GLT-1 after ischemic brain damage. These beneficial effects of neuron-derived E2 appear to be due, at least in part, to suppression of neuronal FGF2 signaling, which is a known suppressor of astrocyte activation. These findings suggest that neuron-derived E2 is neuroprotective after ischemic brain injury via a mechanism that involves suppression of neuronal FGF2 signaling, thereby facilitating astrocyte activation.


Asunto(s)
Astrocitos/metabolismo , Isquemia Encefálica/metabolismo , Estrógenos/metabolismo , Gliosis/metabolismo , Neuronas/metabolismo , Comunicación Paracrina , Animales , Aromatasa/genética , Aromatasa/metabolismo , Isquemia Encefálica/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Estrés Oxidativo
5.
J Cell Mol Med ; 25(21): 10279-10290, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34658138

RESUMEN

Tumour-derived DNA found in the plasma of cancer patients provides the probability to detect somatic mutations from circulating cell-free DNA (cfDNA) in plasma samples. However, clonal hematopoiesis (CH) mutations affect the accuracy of liquid biopsy for cancer diagnosis and treatment. Here, we integrated landscape of CH mutations in 11,725 pan-cancer patients of Chinese and explored effects of CH on liquid biopsies in real-world. We first identified 5933 CHs based on panel sequencing of matched DNA of white blood cell and cfDNA on 301 genes for 5100 patients, in which CH number of patients had positive correlation with their diagnosis age. We observed that canonical genes related to CH, including DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2 and SF3B1, were dominant in the Chinese cohort and 13.29% of CH mutations only appeared in the Chinese cohort compared with the Western cohort. Analysis of CH gene distribution bias indicated that CH tended to appear in genes with functions of tyrosine kinase regulation, PI3K-Akt signalling and TP53 activity, suggesting unfavourable effects of CH mutations in cancer patients. We further confirmed effect of driver genes carried by CH on somatic mutations in liquid biopsy of cancer patients. Forty-eight actionable somatic mutations in 17 driver genes were considered CH genes in 92 patients (1.80%) of the Chinese cohort, implying potential impacts of CH on clinical decision-making. Taken together, this study exhibits strong evidence that gene mutations from CH interfere accuracy of liquid biopsies using cfDNA in cancer diagnosis and treatment in real-world.


Asunto(s)
Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , Hematopoyesis Clonal/genética , Biopsia Líquida , Mutación , China/epidemiología , Estudios de Cohortes , Biología Computacional/métodos , Biblioteca de Genes , Ontología de Genes , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biopsia Líquida/métodos , Neoplasias/diagnóstico , Neoplasias/epidemiología , Neoplasias/genética
6.
J Neurochem ; 158(3): 737-752, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34133773

RESUMEN

Gangliosides, the major sialic-acid containing glycosphingolipids in the mammalian brain, play important roles in brain development and neural functions. Here, we show that the b-series ganglioside GD3 and its biosynthetic enzyme, GD3-synthase (GD3S), were up-regulated predominantly in the microglia of mouse hippocampus from 2 to 7 days following global cerebral ischemia (GCI). Interestingly, GD3S knockout (GD3S-KO) mice exhibited decreased hippocampal neuronal loss following GCI, as compared to wild-type (WT) mice. While comparable levels of astrogliosis and microglial proliferation were observed between WT and GD3S-KO mice, the phagocytic capacity of the GD3S-KO microglia was significantly compromised after GCI. At 2 and 4 days following GCI, the GD3S-KO microglia demonstrated decreased amoebic morphology, reduced neuronal material engulfment, and lower expression of the phagolysosome marker CD68, as compared to the WT microglia. Finally, by using a microglia-primary neuron co-culture model, we demonstrated that the GD3S-KO microglia isolated from mouse brains at 2 days after GCI are less neurotoxic to co-cultured hippocampal neurons than the WT-GCI microglia. Moreover, the percentage of microglia with engulfed neuronal elements in the co-cultured wells was also significantly decreased in the GD3S-KO mice after GCI. Interestingly, the impaired phagocytic capacity of GD3S-KO microglia could be partially restored by pre-treatment with exogenous ganglioside GD3. Altogether, this study provides functional evidence that ganglioside GD3 regulates phagocytosis by microglia in an ischemic stroke model. Our data also suggest that the GD3-linked microglial phagocytosis may contribute to the mechanism of delayed neuronal death following ischemic brain injury.


Asunto(s)
Isquemia Encefálica/metabolismo , Gangliósidos/biosíntesis , Microglía/metabolismo , Fagocitosis/fisiología , Regulación hacia Arriba/fisiología , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Técnicas de Cocultivo , Gangliósidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Neuronas/metabolismo , Neuronas/patología
7.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34948039

RESUMEN

In addition to being a steroid hormone, 17ß-estradiol (E2) is also a neurosteroid produced in neurons in various regions of the brain of many species, including humans. Neuron-derived E2 (NDE2) is synthesized from androgen precursors via the action of the biosynthetic enzyme aromatase, which is located at synapses and in presynaptic terminals in neurons in both the male and female brain. In this review, we discuss evidence supporting a key role for NDE2 as a neuromodulator that regulates synaptic plasticity and memory. Evidence supporting an important neuromodulatory role of NDE2 in the brain has come from studies using aromatase inhibitors, aromatase overexpression in neurons, global aromatase knockout mice, and the recent development of conditional forebrain neuron-specific knockout mice. Collectively, these studies demonstrate a key role of NDE2 in the regulation of synapse and spine density, efficacy of excitatory synaptic transmission and long-term potentiation, and regulation of hippocampal-dependent recognition memory, spatial reference memory, and contextual fear memory. NDE2 is suggested to achieve these effects through estrogen receptor-mediated regulation of rapid kinase signaling and CREB-BDNF signaling pathways, which regulate actin remodeling, as well as transcription, translation, and transport of synaptic proteins critical for synaptic plasticity and function.


Asunto(s)
Estradiol/metabolismo , Neuronas/metabolismo , Memoria Espacial/fisiología , Sinapsis/fisiología , Animales , Aromatasa/genética , Aromatasa/metabolismo , Femenino , Humanos , Masculino , Plasticidad Neuronal , Transducción de Señal
8.
J Neurosci ; 39(15): 2792-2809, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30728170

RESUMEN

17ß-estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but its precise functions in the brain are unclear. Here, we used a forebrain-neuron-specific aromatase knock-out (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain of mice and thereby elucidate its functions. FBN-ARO-KO mice showed a 70-80% decrease in aromatase and forebrain E2 levels compared with FLOX controls. Male and female FBN-ARO-KO mice exhibited significant deficits in forebrain spine and synaptic density, as well as hippocampal-dependent spatial reference memory, recognition memory, and contextual fear memory, but had normal locomotor function and anxiety levels. Reinstating forebrain E2 levels via exogenous in vivo E2 administration was able to rescue both the molecular and behavioral defects in FBN-ARO-KO mice. Furthermore, in vitro studies using FBN-ARO-KO hippocampal slices revealed that, whereas induction of long-term potentiation (LTP) was normal, the amplitude was significantly decreased. Intriguingly, the LTP defect could be fully rescued by acute E2 treatment in vitro Mechanistic studies revealed that FBN-ARO-KO mice had compromised rapid kinase (AKT, ERK) and CREB-BDNF signaling in the hippocampus and cerebral cortex. In addition, acute E2 rescue of LTP in hippocampal FBN-ARO-KO slices could be blocked by administration of a MEK/ERK inhibitor, further suggesting a key role for rapid ERK signaling in neuronal E2 effects. In conclusion, the findings provide evidence of a critical role for neuron-derived E2 in regulating synaptic plasticity and cognitive function in the male and female brain.SIGNIFICANCE STATEMENT The steroid hormone 17ß-estradiol (E2) is well known to be produced in the ovaries in females. Intriguingly, forebrain neurons also express aromatase, the E2 biosynthetic enzyme, but the precise functions of neuron-derived E2 is unclear. Using a novel forebrain-neuron-specific aromatase knock-out mouse model to deplete neuron-derived E2, the current study provides direct genetic evidence of a critical role for neuron-derived E2 in the regulation of rapid AKT-ERK and CREB-BDNF signaling in the mouse forebrain and demonstrates that neuron-derived E2 is essential for normal expression of LTP, synaptic plasticity, and cognitive function in both the male and female brain. These findings suggest that neuron-derived E2 functions as a novel neuromodulator in the forebrain to control synaptic plasticity and cognitive function.


Asunto(s)
Estradiol/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Ansiedad/genética , Ansiedad/psicología , Aromatasa/genética , Cognición , Espinas Dendríticas , Estradiol/metabolismo , Estradiol/farmacología , Femenino , Hipocampo , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prosencéfalo/enzimología , Prosencéfalo/metabolismo , Desempeño Psicomotor/fisiología , Aprendizaje Espacial
9.
Cell Physiol Biochem ; 51(5): 2421-2433, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30537743

RESUMEN

BACKGROUND/AIMS: Excessive fluoride intake can induce cytotoxicity, DNA damage and cell-cycle changes in many tissues and organs, including the kidney. However, the underlying molecular mechanisms of fluoride-induced renal cell-cycle changes are not well understood at present. In this study, we used a mouse model to investigate how sodium fluoride (NaF) induces cell-cycle changes in renal cells. METHODS: Two hundred forty ICR mice were randomly assigned to four equal groups for intragastric administration of NaF (0, 12, 24 and 48 mg/kg body weight/day) for 42 days. Kidneys were taken to measure changes of the cell-cycle at 21 and 42 days of the experiment, using flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot methods. RESULTS: NaF, at more than 12 mg/kg body weight, induced G2/M phase cell-cycle arrest in the renal cells, which was supported by the finding of significantly increased percentages of renal cells in the G2/M phase. We found also that G2/M phase cell-cycle arrest was accompanied by up-regulation of p-ATM, p-Chk2, p-p53, p-Cdc25C, p-CDK1, p21, and Gadd45a protein expression levels; up-regulation of ATM, Chk2, p53, p21, and Gadd45a mRNA expression levels; down-regulation of CyclinB1, mdm2, PCNA protein expression levels; and down-regulation of CyclinB1, CDK1, Cdc25C, mdm2, and PCNA mRNA expression levels. CONCLUSION: In this mouse model, NaF, at more than 12 mg/ kg, induced G2/M phase cell-cycle arrest by activating the ATM-Chk2-p53/Cdc25C signaling pathway, which inhibits the proliferation of renal cells and development of the kidney. Activation of the ATM-Chk2-p53/Cdc25C signaling pathway is the mechanism of NaF-induced renal G2/M phase cell-cycle arrest in this model.


Asunto(s)
Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Riñón/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fluoruro de Sodio/efectos adversos , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa de Punto de Control 2/metabolismo , Femenino , Riñón/citología , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos ICR , Proteína p53 Supresora de Tumor/metabolismo , Fosfatasas cdc25/metabolismo
10.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30341076

RESUMEN

Corynebacterium glutamicum is frequently engineered to serve as a versatile platform and model microorganism. However, due to its complex cell wall structure, transformation of C. glutamicum with exogenous DNA is inefficient. Although efforts have been devoted to improve the transformation efficiency by using cell wall-weakening agents, direct genetic engineering of cell wall synthesis for enhancing cell competency has not been explored thus far. Herein, we reported that engineering of peptidoglycan synthesis could significantly increase the transformation efficiency of C. glutamicum Comparative analysis of C. glutamicum wild-type strain ATCC 13869 and a mutant with high electrotransformation efficiency revealed nine mutations in eight cell wall synthesis-related genes. Among them, the Y489C mutation in bifunctional peptidoglycan glycosyltransferase/peptidoglycan dd-transpeptidase PonA dramatically increased the electrotransformation of strain ATCC 13869 by 19.25-fold in the absence of cell wall-weakening agents, with no inhibition on growth. The Y489C mutation had no effect on the membrane localization of PonA but affected the peptidoglycan structure. Deletion of the ponA gene led to more dramatic changes to the peptidoglycan structure but only increased the electrotransformation by 4.89-fold, suggesting that appropriate inhibition of cell wall synthesis benefited electrotransformation more. Finally, we demonstrated that the PonAY489C mutation did not cause constitutive or enhanced glutamate excretion, making its permanent existence in C. glutamicum ATCC 13869 acceptable. This study demonstrates that genetic engineering of genes involved in cell wall synthesis, especially peptidoglycan synthesis, is a promising strategy to improve the electrotransformation efficiency of C. glutamicumIMPORTANCE Metabolic engineering and synthetic biology are now the key enabling technologies for manipulating microorganisms to suit the practical outcomes desired by humankind. The introduction of exogenous DNA into cells is an indispensable step for this purpose. However, some microorganisms, including the important industrial workhorse Corynebacterium glutamicum, possess a complex cell wall structure to shield cells against exogenous DNA. Although genes responsible for cell wall synthesis in C. glutamicum are known, engineering of related genes to improve cell competency has not been explored yet. In this study, we demonstrate that mutations in cell wall synthesis genes can significantly improve the electrotransformation efficiency of C. glutamicum Notably, the Y489C mutation in bifunctional peptidoglycan glycosyltransferase/peptidoglycan dd-transpeptidase PonA increased electrotransformation efficiency by 19.25-fold by affecting peptidoglycan synthesis.


Asunto(s)
Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Mutación , Peptidoglicano/biosíntesis , Peptidoglicano/genética , Aminoaciltransferasas/genética , Proteínas Portadoras , Pared Celular/metabolismo , ADN Bacteriano/genética , Ácido Glutámico/metabolismo , Ingeniería Metabólica , Proteínas de Microfilamentos , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/química , Peptidoglicano Glicosiltransferasa/genética
11.
Microb Cell Fact ; 16(1): 205, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29145843

RESUMEN

BACKGROUND: Corynebacterium glutamicum is an important industrial workhorse and advanced genetic engineering tools are urgently demanded. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) have revolutionized the field of genome engineering. The CRISPR/Cas9 system that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. RESULTS: Herein, we developed a versatile CRISPR/Cas9 genome editing toolbox for C. glutamicum. Cas9 and gRNA expression cassettes were reconstituted to combat Cas9 toxicity and facilitate effective termination of gRNA transcription. Co-transformation of Cas9 and gRNA expression plasmids was exploited to overcome high-frequency mutation of cas9, allowing not only highly efficient gene deletion and insertion with plasmid-borne editing templates (efficiencies up to 60.0 and 62.5%, respectively) but also simple and time-saving operation. Furthermore, CRISPR/Cas9-mediated ssDNA recombineering was developed to precisely introduce small modifications and single-nucleotide changes into the genome of C. glutamicum with efficiencies over 80.0%. Notably, double-locus editing was also achieved in C. glutamicum. This toolbox works well in several C. glutamicum strains including the widely-used strains ATCC 13032 and ATCC 13869. CONCLUSIONS: In this study, we developed a CRISPR/Cas9 toolbox that could facilitate markerless gene deletion, gene insertion, precise base editing, and double-locus editing in C. glutamicum. The CRISPR/Cas9 toolbox holds promise for accelerating the engineering of C. glutamicum and advancing its application in the production of biochemicals and biofuels.


Asunto(s)
Sistemas CRISPR-Cas/genética , Corynebacterium glutamicum/metabolismo , Edición Génica/métodos , Ingeniería Genética/métodos , Genoma Bacteriano/genética
12.
Front Neurosci ; 17: 1227705, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575310

RESUMEN

Introduction: Chronic neuroinflammation can exist for months to years following traumatic brain injury (TBI), although the underlying mechanisms remain poorly understood. Methods: In the current study, we used a controlled cortical impact mouse model of TBI to examine whether proinflammatory senescent cells are present in the brain long-term (months) after TBI and whether ablation of these cells via administration of senolytic drugs can improve long-term functional outcome after TBI. The results revealed that astrocytes and microglia in the cerebral cortex, hippocampus, corpus callosum and lateral posterior thalamus colocalized the senescent cell markers, p16Ink4a or p21Cip1/Waf1 at 5 weeks post injury (5wpi) and 4 months post injury (4mpi) in a controlled cortical impact (CCI) model. Intermittent administration of the senolytic drugs, dasatinib and quercetin (D + Q) beginning 1-month after TBI for 13 weeks significantly ablated p16Ink4a-positive- and p21Cip1/Waf1-positive-cells in the brain of TBI animals, and significantly reduced expression of the major senescence-associated secretory phenotype (SASP) pro-inflammatory factors, interleukin-1ß and interleukin-6. Senolytic treatment also significantly attenuated neurodegeneration and enhanced neuron number at 18 weeks after TBI in the ipsilateral cortex, hippocampus, and lateral posterior thalamus. Behavioral testing at 18 weeks after TBI further revealed that senolytic therapy significantly rescued defects in spatial reference memory and recognition memory, as well as depression-like behavior in TBI mice. Discussion: Taken as a whole, these findings indicate there is robust and widespread induction of senescent cells in the brain long-term after TBI, and that senolytic drug treatment begun 1-month after TBI can efficiently ablate the senescent cells, reduce expression of proinflammatory SASP factors, reduce neurodegeneration, and rescue defects in reference memory, recognition memory, and depressive behavior.

13.
J Thromb Haemost ; 21(9): 2473-2484, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37196848

RESUMEN

BACKGROUND: Respiratory failure is the primary cause of death in patients with COVID-19, whereas coagulopathy is associated with excessive inflammation and multiorgan failure. Neutrophil extracellular traps (NETs) may exacerbate inflammation and provide a scaffold for thrombus formation. OBJECTIVES: The goal of this study was to determine whether degradation of NETs by recombinant human DNase-I (rhDNase), a safe, Food and Drug Administration-approved drug, reduces excessive inflammation, reverses aberrant coagulation, and improves pulmonary perfusion after experimental acute respiratory distress syndrome (ARDS). METHODS: Intranasal poly(I:C), a synthetic double-stranded RNA, was administered to adult mice for 3 consecutive days to simulate a viral infection, and these subjects were randomized to treatment arms, which received either an intravenous placebo or rhDNase. The effects of rhDNase on immune activation, platelet aggregation, and coagulation were assessed in mice and donor human blood. RESULTS: NETs were observed in bronchoalveolar lavage fluid and within regions of hypoxic lung tissue after experimental ARDS. The administration of rhDNase mitigated peribronchiolar, perivascular, and interstitial inflammation induced by poly(I:C). In parallel, rhDNase degraded NETs, attenuated platelet-NET aggregates, reduced platelet activation, and normalized the clotting time to improve regional perfusion, as observed using gross morphology, histology, and microcomputed tomographic imaging in mice. Similarly, rhDNase reduced NETs and attenuated platelet activation in human blood. CONCLUSION: NETs exacerbate inflammation and promote aberrant coagulation by providing a scaffold for aggregated platelets after experimental ARDS. Intravenous administration of rhDNase degrades NETs and attenuates coagulopathy in ARDS, providing a promising translational approach to improve pulmonary structure and function after ARDS.


Asunto(s)
COVID-19 , Trampas Extracelulares , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Animales , Ratones , Trampas Extracelulares/metabolismo , COVID-19/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Inflamación/metabolismo , Neutrófilos/metabolismo
14.
Biology (Basel) ; 12(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37106821

RESUMEN

17ß-estradiol (E2) is produced in the brain as a neurosteroid, in addition to being an endocrine signal in the periphery. The current animal models for studying brain-derived E2 include global and conditional non-inducible knockout mouse models. The aim of this study was to develop a tamoxifen (TMX)-inducible astrocyte-specific aromatase knockout mouse line (GFAP-ARO-iKO mice) to specifically deplete the E2 synthesis enzymes and aromatase in astrocytes after their development in adult mice. The characterization of the GFAP-ARO-iKO mice revealed a specific and robust depletion in the aromatase expressions of their astrocytes and a significant decrease in their hippocampal E2 levels after a GCI. The GFAP-ARO-iKO animals were alive and fertile and had a normal general brain anatomy, with a normal astrocyte shape, intensity, and distribution. In the hippocampus, after a GCI, the GFAP-ARO-iKO animals showed a major deficiency in their reactive astrogliosis, a dramatically increased neuronal loss, and increased microglial activation. These findings indicate that astrocyte-derived E2 (ADE2) regulates the ischemic induction of reactive astrogliosis and microglial activation and is neuroprotective in the ischemic brain. The GFAP-ARO-iKO mouse models thus provide an important new model to help elucidate the roles and functions of ADE2 in the brain.

15.
Pathol Oncol Res ; 29: 1610819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816541

RESUMEN

The outcomes of patients with diffuse large B-cell lymphoma (DLBCL) vary widely, and about 40% of them could not be cured by the standard first-line treatment, R-CHOP, which could be due to the high heterogeneity of DLBCL. Here, we aim to construct a prognostic model based on the genetic signature of metabolic heterogeneity of DLBCL to explore therapeutic strategies for DLBCL patients. Clinical and transcriptomic data of one training and four validation cohorts of DLBCL were obtained from the GEO database. Metabolic subtypes were identified by PAM clustering of 1,916 metabolic genes in the 7 major metabolic pathways in the training cohort. DEGs among the metabolic clusters were then analyzed. In total, 108 prognosis-related DEGs were identified. Through univariable Cox and LASSO regression analyses, 15 DEGs were used to construct a risk score model. The overall survival (OS) and progression-free survival (PFS) of patients with high risk were significantly worse than those with low risk (OS: HR 2.86, 95%CI 2.04-4.01, p < 0.001; PFS: HR 2.42, 95% CI 1.77-3.31, p < 0.001). This model was also associated with OS in the four independent validation datasets (GSE10846: HR 1.65, p = 0.002; GSE53786: HR 2.05, p = 0.02; GSE87371: HR 1.85, p = 0.027; GSE23051: HR 6.16, p = 0.007) and PFS in the two validation datasets (GSE87371: HR 1.67, p = 0.033; GSE23051: HR 2.74, p = 0.049). Multivariable Cox analysis showed that in all datasets, the risk model could predict OS independent of clinical prognosis factors (p < 0.05). Compared with the high-risk group, patients in the low-risk group predictively respond to R-CHOP (p = 0.0042), PI3K inhibitor (p < 0.05), and proteasome inhibitor (p < 0.05). Therefore, in this study, we developed a signature model of 15 DEGs among 3 metabolic subtypes, which could predict survival and drug sensitivity in DLBCL patients.


Asunto(s)
Linfoma de Células B Grandes Difuso , Fosfatidilinositol 3-Quinasas , Humanos , Pronóstico , Estudios Retrospectivos , Rituximab/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Vincristina/uso terapéutico , Prednisona/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
16.
Exp Neurol ; 361: 114320, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36627040

RESUMEN

Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels. This encouraged us to investigate the levels of endocannabinoid-metabolizing enzymes in a mouse model of controlled cortical impact (CCI). Reductions in endocannabinoid (2-AG and AEA) levels in plasma were supported by higher expression of their respective metabolizing enzymes, monoacylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), and cyclooxygenase 2 (Cox-2) in the post-TBI mouse brain. Following increased metabolism of endocannabinoids post-TBI, we observed increased expression of CB2, non-cannabinoid receptor Transient receptor potential vanilloid-1 (TRPV1), aquaporin 4 (AQP4), ionized calcium binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and acute reduction in cerebral blood flow (CBF). The BCB and pericontusional cortex showed altered endocannabinoid expressions and reduction in ventricular volume. Finally, loss of motor functions and induced anxiety behaviors were observed in these TBI mice. Taken together, our findings suggest endocannabinoids and their metabolizing enzymes play an important role in the brain and BCB integrity and highlight the need for more extensive studies on these mechanisms.


Asunto(s)
Antineoplásicos , Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Ratones , Humanos , Animales , Endocannabinoides/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Receptor Cannabinoide CB1/metabolismo
17.
Front Public Health ; 10: 1005257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438206

RESUMEN

The number of older adults is rising rapidly in China. Various concerns such as chronic diseases, financial inadequacy, and a feeling of loneliness have adversely affected the mental health of older adults, and this has become an important public health and social issue. To realize healthy aging, the Nineteenth National People's Congress of China put forth the Healthy China strategy, speeding up the promotion activities of mental health and pension measures, carrying out public welfare pension insurance for the entire population, and contributing to the mental health of older adults. This study used data from China Family Panel Studies. This study mainly uses the random effect estimation method (random effect, RE) and the feasible generalized least squares estimation method (FGLS) to control for heterogeneity to explore the impact of social and commercial pension insurance on the mental health of older adults, the moderating effect of social capital on pension insurance, and the mental health of older adults. The results showed that social pension insurance is proportional to the mental health of older adults, whereas commercial pension insurance is inversely proportional to mental health. Social capital had a significant moderating effect on pension insurance. When a country develops an aging economy, the emphasis on social capital helps make targeted industrial development suggestions. The government's expansion of insurance coverage is crucial for improving the mental health of older adults.


Asunto(s)
Seguro , Capital Social , Humanos , Anciano , Salud Mental , China/epidemiología , Pensiones
18.
Neurosci Biobehav Rev ; 132: 793-817, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34823913

RESUMEN

Although classically known as an endocrine signal produced by the ovary, 17ß-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.


Asunto(s)
Estrógenos , Plasticidad Neuronal , Animales , Astrocitos , Estradiol , Femenino , Masculino , Ratones , Plasticidad Neuronal/fisiología , Prosencéfalo
19.
Biology (Basel) ; 11(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36552208

RESUMEN

Astrocytes and neurons in the male and female brains produce the neurosteroid brain-derived 17ß-estradiol (BDE2) from androgen precursors. In this review, we discuss evidence that suggest BDE2 has a role in a number of neurological conditions, such as focal and global cerebral ischemia, traumatic brain injury, excitotoxicity, epilepsy, Alzheimer's disease, and Parkinson's disease. Much of what we have learned about BDE2 in neurological disorders has come from use of aromatase inhibitors and global aromatase knockout mice. Recently, our group developed astrocyte- and neuron-specific aromatase knockout mice, which have helped to clarify the precise functions of astrocyte-derived 17ß-estradiol (ADE2) and neuron-derived 17ß-estradiol (NDE2) in the brain. The available evidence to date suggests a primarily beneficial role of BDE2 in facilitating neuroprotection, synaptic and cognitive preservation, regulation of reactive astrocyte and microglia activation, and anti-inflammatory effects. Most of these beneficial effects appear to be due to ADE2, which is induced in most neurological disorders, but there is also recent evidence that NDE2 exerts similar beneficial effects. Furthermore, in certain situations, BDE2 may also have deleterious effects, as recent evidence suggests its overproduction in epilepsy contributes to seizure induction. In this review, we examine the current state of this quickly developing topic, as well as possible future studies that may be required to provide continuing growth in the field.

20.
Front Oncol ; 11: 648895, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497754

RESUMEN

To our knowledge, no studies have reported the use of anlotinib in the treatment of locally cancerous nasopharyngeal inverted papillomas that cannot be operated on or treated with radiotherapy. Here, we report a case of a 53-year-old woman diagnosed with recurrent local canceration of nasopharynx papilloma. Magnetic resonance imaging (MRI) showed that the right parapharyngeal space, nasopharynx, and ethmoid sinus were changed, and recurrence was considered. There was no indication for surgery or radiotherapy. Imaging showed that the tumor had obvious enhancement and abundant blood vessels. Immunohistochemistry showed that vascular endothelial growth factor receptor (VEGFR) 2 expression was positive in papilloma tissue and in local canceration tissue of the papilloma. After the patient's consent was obtained, anlotinib treatment was started in May and ended in November 2019. Then, the patient was treated with intensity-modulated radiotherapy (IMRT) with planning gross tumor volume (PGTV) 66 Gy, planning clinical tumor volume 1 (PCTV1) 60 Gy, and planning clinical tumor volume 2 (PCTV2) 54 Gy in 33 fractions. No disease recurrence was reported at 4 months after radiotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA