Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(2): e0215823, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38289134

RESUMEN

Drought and salinity are ubiquitous environmental factors that pose hyperosmotic threats to microorganisms and impair their efficiency in performing environmental functions. However, bacteria have developed various responses and regulatory systems to cope with these abiotic challenges. Posttranscriptional regulation plays vital roles in regulating gene expression and cellular homeostasis, as hyperosmotic stress conditions can lead to the induction of specific small RNA molecules (sRNAs) that participate in stress response regulation. Here, we report a candidate functional sRNA landscape of Sphingomonas melonis TY under hyperosmotic stress, and 18 sRNAs were found with a clear response to hyperosmotic stress. These findings will help in the comprehensive analysis of sRNA regulation in Sphingomonas species. Weighted correlation network analysis revealed a 263 nucleotide sRNA, SNC251, which was transcribed from its own promoter and showed the most significant correlation with hyperosmotic response factors. Deletion of snc251 affected biofilm formation and multiple cellular processes, including ribosome-related pathways, aromatic compound degradation, and the nicotine degradation capacity of S. melonis TY, while overexpression of SNC251 facilitated biofilm formation by TY under hyperosmotic stress. Two genes involved in the TonB system were further verified to be activated by SNC251, which also indicated that SNC251 is a trans-acting sRNA. Briefly, this research reports a landscape of sRNAs participating in the hyperosmotic stress response in S. melonis and reveals a novel sRNA, SNC251, which contributes to the S. melonis TY biofilm formation and thus enhances its hyperosmotic stress response ability.IMPORTANCESphingomonas species play a vital role in plant defense and pollutant degradation and survive extensively under drought or salinity. Previous studies have focused on the transcriptional and translational responses of Sphingomonas under hyperosmotic stress, but the posttranscriptional regulation of small RNA molecules (sRNAs) is also crucial for quickly modulating cellular processes to adapt dynamically to osmotic environments. In addition, the current knowledge of sRNAs in Sphingomonas is extremely scarce. This research revealed a novel sRNA landscape of Sphingomonas melonis and will greatly enhance our understanding of sRNAs' acting mechanisms in the hyperosmotic stress response.


Asunto(s)
ARN Pequeño no Traducido , Sphingomonas , Sphingomonas/genética , ARN Bacteriano/genética , Bacterias/genética , Osmorregulación/genética , Regulación Bacteriana de la Expresión Génica
2.
Artículo en Inglés | MEDLINE | ID: mdl-38190241

RESUMEN

Five strains of two novel species were isolated from the wastewater treatment systems of a pharmaceutical factory located in Zhejiang province, PR China. Strains ZM22T and Y6 were identified as belonging to a potential novel species of the genus Comamonas, whereas strains ZM23T, ZM24 and ZM25 were identified as belonging to a novel species of the genus Pseudomonas. These strains were characterized by polyphasic approaches including 16S rRNA gene analysis, multi-locus sequence analysis, average nucleotide identity (ANI), in silico DNA-DNA hybridization (isDDH), physiological and biochemical tests, as well as chemotaxonomic analysis. Genome-based phylogenetic analysis further confirmed that strains ZM22T and Y6 form a distinct clade closely related to Comamonas testosteroni ATCC 11996T and Comamonas thiooxydans DSM 17888T. Strains ZM23T, ZM24 and ZM25 were grouped as a separate clade closely related to Pseudomonas nitroreducens DSM 14399T and Pseudomonas nicosulfuronedens LAM1902T. The orthoANI and isDDH results indicated that strains ZM22T and Y6 belong to the same species. In addition, genomic DNA fingerprinting demonstrated that these strains do not originate from a single clone. The same results were observed for strains ZM23T, ZM24 and ZM25. Strains ZM22T and Y6 were resistant to multiple antibiotics, whereas strains ZM23T, ZM24 and ZM25 were able to degrade an emerging pollutant, triclosan. The phylogenetic, physiological and biochemical characteristics, as well as chemotaxonomy, allowed these strains to be distinguished from their genus, and we therefore propose the names Comamonas resistens sp. nov. (type strain ZM22=MCCC 1K08496T=KCTC 82561T) and Pseudomonas triclosanedens sp. nov. (type strain ZM23T=MCCC 1K08497T=JCM 36056T), respectively.


Asunto(s)
Comamonas , Ácidos Grasos , Purificación del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , Comamonas/genética , ADN Bacteriano/genética , Ácidos Grasos/química , Filogenia , Pseudomonas/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Industria Farmacéutica
3.
Environ Sci Technol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012163

RESUMEN

The emerging contaminant triclosan (TCS) is widely distributed both in surface water and in wastewater and poses a threat to aquatic organisms and human health due to its resistance to degradation. The dioxygenase enzyme TcsAB has been speculated to perform the initial degradation of TCS, but its precise catalytic mechanism remains unclear. In this study, the function of TcsAB was elucidated using multiple biochemical and molecular biology methods. Escherichia coli BL21(DE3) heterologously expressing tcsAB from Sphingomonas sp. RD1 converted TCS to 2,4-dichlorophenol. TcsAB belongs to the group IA family of two-component Rieske nonheme iron ring-hydroxylating dioxygenases. The highest amino acid identity of TcsA and the large subunits of other dioxygenases in the same family was only 35.50%, indicating that TcsAB is a novel dioxygenase. Mutagenesis of residues near the substrate binding pocket decreased the TCS-degrading activity and narrowed the substrate spectrum, except for the TcsAF343A mutant. A meta-analysis of 1492 samples from wastewater treatment systems worldwide revealed that tcsA genes are widely distributed. This study is the first to report that the TCS-specific dioxygenase TcsAB is responsible for the initial degradation of TCS. Studying the microbial degradation mechanism of TCS is crucial for removing this pollutant from the environment.

4.
Appl Environ Microbiol ; 89(10): e0118723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37823642

RESUMEN

Methyl tert-butyl ether (MTBE) has been recognized as a groundwater contaminant due to its widespread distribution and potential threat to human health. The limited understanding of the enzymes catalyzing MTBE degradation restricts their application in MTBE bioremediation. In this study, an MTBE-degrading soluble di-iron monooxygenase that clusters phylogenetically with a known propane monooxygenase (PRM) encoded by the prmABCD gene cluster was identified and functionally characterized, revealing their role in MTBE metabolism by Mycobacterium vaccae JOB5. Transcriptome analysis demonstrated that the expression of prmABCD was upregulated when JOB5 was induced by MTBE. Escherichia coli Rosetta heterologously expressing prmABCD from JOB5 could transform MTBE, indicating that the PRM of JOB5 is capable of the initial degradation of MTBE. The loss of the gene encoding the oxygenase α-subunit or ß-subunit, the coupling protein, or the reductase disrupted MTBE transformation by the recombinant E. coli Rosetta. In addition, the catalytic capacity of PRM is likely affected by residue G95 in the active site pocket and residues I84, P165, A269, and V270 in the substrate tunnel structure. Mutation of amino acids in the active site and substrate tunnel resulted in inefficiency or inactivation of MTBE degradation, and the activity in 1,4-dioxane (1,4-D) degradation was diminished less than that in MTBE degradation.IMPORTANCEMulticomponent monooxygenases catalyzing the initial hydroxylation of MTBE are important in MTBE biodegradation. Previous studies of MTBE degradation enzymes have focused on P450s, alkane monooxygenase and MTBE monooxygenase, but the vital role of soluble di-iron monooxygenases has rarely been reported. In this study, we deciphered the essential catalytic role of a PRM and revealed the key residues of the PRM in MTBE metabolism. Our findings provide new insight into the MTBE-degrading gene cluster and enzymes in bacteria. This characterization of the PRM associated with MTBE degradation expands our understanding of MTBE-degrading gene diversity and provides a novel candidate enzyme for the bioremediation of MTBE-contaminated sites.


Asunto(s)
Oxigenasas de Función Mixta , Propano , Humanos , Oxigenasas de Función Mixta/metabolismo , Propano/metabolismo , Oxidación-Reducción , Escherichia coli/genética , Escherichia coli/metabolismo , Hierro , Biodegradación Ambiental
5.
Appl Environ Microbiol ; 89(5): e0032423, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37071026

RESUMEN

A gene cluster ndp, responsible for nicotine degradation via a variant of the pyridine and pyrrolidine pathways, was previously identified in Sphingomonas melonis TY, but the regulation mechanism remains unknown. The gene ndpR within the cluster was predicted to encode a TetR family transcriptional regulator. Deletion of ndpR resulted in a notably shorter lag phase, higher maximum turbidity, and faster substrate degradation when cultivated in the presence of nicotine. Real-time quantitative PCR and promoter activity analysis in wild-type TY and TYΔndpR strains revealed that genes in the ndp cluster were negatively regulated by NdpR. However, complementation of ndpR to TYΔndpR did not restore transcription repression, but, instead, the complemented strain showed better growth than TYΔndpR. Promoter activity analysis indicates that NdpR also functions as an activator in the transcription regulation of ndpHFEGD. Further analysis through electrophoretic mobility shift assay and DNase I footprinting assay revealed that NdpR binds five DNA sequences within ndp and that NdpR has no autoregulation. These binding motifs overlap with the -35 or -10 box or are located distal upstream of the corresponding transcriptional start site. Multiple sequence alignment of these five NdpR-binding DNA sequences found a conserved motif, with two of the binding sequences being partially palindromic. 2,5-Dihydroxypyridine acted as a ligand of NdpR, preventing NdpR from binding to the promoter region of ndpASAL, ndpTB, and ndpHFEGD. This study revealed that NdpR binds to three promoters in the ndp cluster and is a dual-role transcriptional regulator in nicotine metabolism. IMPORTANCE Gene regulation is critical for microorganisms in the environment in which they may encounter various kinds of organic pollutants. Our study revealed that transcription of ndpASAL, ndpTB, and ndpHFEGD is negatively regulated by NdpR, and NdpR also exhibits a positive regulatory effect on PndpHFEGD. Furthermore, 2,5-dihydroxypyridine was identified as the effector molecular for NdpR and can both prevent the binding of free NdpR to the promoter and release NdpR from the promoters, which is different from previously reported NicR2. Additionally, NdpR was found to have both negative and positive transcription regulatory effects on the same target, PndpHFEGD, while only one binding site was identified, which is notably different from the previously reported TetR family regulators. Moreover, NdpR was revealed to be a global transcriptional regulator. This study provides new insight into the complex gene expression regulation of the TetR family.


Asunto(s)
Nicotina , Sphingomonas , Nicotina/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Regiones Promotoras Genéticas , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 205-211, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37715378

RESUMEN

Chronic atrophic gastritis (CAG) is an important stage in the transformation of the normal gastric mucosa into gastric cancer. Granule Dendrobii (GD), a proprietary Chinese medicine, has proven clinical efficacy in treating CAG. GD might promote the reversal of precancerous lesions by improving them in CAG patients. However, the mechanism of GD in CAG treatment is relatively less understood. Here, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced CAG rats were treated with GD and its efficacy was evaluated by observing the changes in the rats' weight and the pathology of gastric tissues. The potential effect of GD on the bacteria was predicted and verified in the large and small intestines and stomachs of CAG rats using amplicon sequencing and RT-qPCR. The results showed that GD could ameliorate the symptoms of body weight loss in CAG rats. Hematoxylin-Eosin (HE) and Alcian Blue (AB) staining showed that GD significantly improved the pathological state of the gastric mucosa in CAG rats. The relative abundance (RA) of Lactobacillus and Turicibacter significantly decreased after GD intervention compared with that of the model group (P < 0.05), indicating that GD might improve CAG by regulating the RA of Lactobacillus and Turicibacter. These findings revealed that Lactobacillus and Turicibacter as bacteria agents associated with gastritis, have the potential to inhibit gastric cancer, especially Turicibacter maybe another pathogen of CAG besides Helicobacter pylori (HP), which is worthy of further study. Meanwhile, the findings provided new ideas and materials for the research and development of new CAG drugs.


Asunto(s)
Gastritis Atrófica , Gastritis , Neoplasias Gástricas , Animales , Ratas , Gastritis Atrófica/tratamiento farmacológico , Metilnitronitrosoguanidina , Lactobacillus
7.
Environ Res ; 219: 115014, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549482

RESUMEN

Hyperosmotic stress is one of the most ubiquitous stress factors in microbial habitats and impairs the efficiency of bacteria performing vital biochemical tasks. Sphingomonas serves as a 'superstar' of plant defense and pollutant degradation, and is widely existed in the environment. However, it is still unclear that how Sphingomonas sp. survives under hyperosmotic stress conditions. In this study, multiomics profiling analysis was conducted with S. melonis TY under hyperosmotic conditions to investigate the intracellular hyperosmotic responses. The transcriptome and proteome revealed that sensing systems, including most membrane protein coding genes were upregulated, genes related to two-component systems were tiered adjusted to reset the whole system, other stress response regulators such as sigma-70 were also significantly tiered upregulated. In addition, transport systems together with compatible solute biosynthesis related genes were significantly upregulated to accumulate intracellular nutrients and compatible solutes. When treated with hyperosmotic stress, redox-stress response systems were triggered and mechanosensitive channels together with ion transporters were induced to maintain cellular ion homeostasis. In addition, cellular concentration of c-di-guanosine monophosphate synthetase (c-di-GMP) was reduced, followed by negative influences on genes involved in flagellar assembly and chemotaxis pathways, leading to severe damage to the athletic ability of S. melonis TY, and causing detachments of biofilms. Briefly, this research revealed a comprehensive response mechanism of S. melonis TY exposure to hyperosmotic stress, and emphasized that flagellar assembly and biofilm formation were vulnerable to hyperosmotic conditions. Importance. Sphingomonas, a genus with versatile functions survives extensively, lauded for its prominent role in plant protection and environmental remediation. Current evidence shows that hyperosmotic stress as a ubiquitous environmental factor, usually threatens the survival of microbes and thus impairs the efficiency of their environmental functions. Thus, it is essential to explore the cellular responses to hyperosmotic stress. Hence, this research will greatly enhance our understanding of the global transcriptional and translational regulation of S. melonis TY in response to hyperosmotic stress, leading to broader perspectives on the impacts of stressful environments.


Asunto(s)
Proteínas Bacterianas , Sphingomonas , Proteínas Bacterianas/genética , Sphingomonas/genética , Sphingomonas/metabolismo , Transcriptoma , Regulación Bacteriana de la Expresión Génica
8.
Appl Environ Microbiol ; 88(6): e0188021, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35108100

RESUMEN

Tetrahydrofuran (THF) has been recognized as a water contaminant because of its human carcinogenicity, extensive use, and widespread distribution. Previously reported multicomponent monooxygenases (MOs) involved in THF degradation were highly conserved, and all of them were from Gram-positive bacteria. In this study, a novel THF-degrading gene cluster (dmpKLMNOP) encoding THF hydroxylase was identified on the chromosome of a newly isolated Gram-negative THF-degrading bacterium, Cupriavidus metallidurans ZM02, and functionally characterized. Transcriptome sequencing and RT-qPCR demonstrated that the expression of dmpKLMNOP was upregulated during the growth of strain ZM02 on THF or phenol. The deletion of oxygenase alpha or beta subunit or the reductase component disrupted the degradation of THF but did not affect the utilization of its hydroxylated product 2-hydroxytetrahydrofuran. Cupriavidus pinatubonensis JMP134 heterologously expressing dmpKLMNOP from strain ZM02 could grow on THF, indicating that the THF hydroxylase DmpZM02KLMNOP is responsible for the initial degradation of THF. Furthermore, the THF and phenol oxidation activities of crude enzyme extracts were detected, and the highest THF and phenol catalytic activities were 1.38 ± 0.24 µmol min-1 mg-1 and 1.77 ± 0.37 µmol min-1 mg-1, respectively, with the addition of NADPH and Fe2+. The characterization of THF hydroxylase associated with THF degradation enriches our understanding of THF-degrading gene diversity and provides a novel potential enzyme for the bioremediation of THF-containing pollutants. IMPORTANCE Multicomponent MOs catalyzing the initial hydroxylation of THF are vital rate-limiting enzymes in the THF degradation pathway. Previous studies of THF degradation gene clusters have focused on Gram-positive bacteria, and the molecular mechanism of THF degradation in Gram-negative bacteria has rarely been reported. In this study, a novel THF hydroxylase encoded by dmpKLMNOP in strain ZM02 was identified to be involved in both THF and phenol degradation. Our findings provide new insights into the THF-degrading gene cluster and enzymes in Gram-negative bacteria.


Asunto(s)
Cupriavidus , Oxigenasas de Función Mixta , Biodegradación Ambiental , Cupriavidus/genética , Cupriavidus/metabolismo , Furanos/metabolismo , Humanos , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas
9.
Appl Microbiol Biotechnol ; 106(17): 5675-5686, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35927333

RESUMEN

Bacteria have developed various mechanisms by which they can compete or cooperate with other bacteria. This study showed that in the cocultures of wild-type Sphingomonas melonis TY and its isogenic mutant TYΔndpD grow with nicotine, the former can outcompete the latter. TYΔndpD undergoes growth arrest after four days when cocultured with wild-type TY, whereas the coculture has just entered a stationary phase and the substrate was nearly depleted, and the interaction between the two related strains was revealed by transcriptomic analysis. Analysis of the differential expression genes indicated that wild-type TY inhibited the growth of TYΔndpD mainly through toxin-antitoxin (TA) systems. The four upregulated antitoxin coding genes belong to type II TA systems in which the bactericidal effect of the cognate toxin was mainly through inhibition of translation or DNA replication, whereas wild-type TY with upregulated antitoxin genes can regenerate cognate immunity protein continuously and thus prevent the lethal action of toxin to itself. In addition, colicin-mediated antibacterial activity against closely related species may also be involved in the competition between wild-type TY and TYΔndpD under nutritional stress. Moreover, upregulation of carbon and nitrogen catabolism related-, stress response related-, DNA repair related-, and DNA replication-related genes in wild-type TY showed that it triggered a series of response mechanisms when facing dual stress of competition from isogenic mutant cells and nutritional limitation. Thus, we proposed that S. melonis TY employed the TA systems and colicin to compete with TYΔndpD under nutritional stress, thereby maximally acquiring and exploiting finite resources. KEY POINTS: • Cross-feeding between isogenic mutants and the wild-type strain. • Nutrition stress caused a shift from cooperation to competition. • TYΔndpD undergo growth arrest by exogenous and endogenous toxins.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Colicinas , Proteínas Bacterianas , Perfilación de la Expresión Génica , Sphingomonas
10.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709720

RESUMEN

3-Hydroxypyridine (3HP) is an important natural pyridine derivative. Ensifer adhaerens HP1 can utilize 3HP as its sole sources of carbon, nitrogen, and energy to grow, but the genes responsible for the degradation of 3HP remain unknown. In this study, we predicted that a gene cluster, designated 3hpd, might be responsible for the degradation of 3HP. The analysis showed that the initial hydroxylation of 3HP in E. adhaerens HP1 was catalyzed by a four-component dehydrogenase (HpdA1A2A3A4) and led to the formation of 2,5-dihydroxypyridine (2,5-DHP). In addition, the SRPBCC component in HpdA existed as a separate subunit, which is different from other SRPBCC-containing molybdohydroxylases acting on N-heterocyclic aromatic compounds. Moreover, the results demonstrated that the phosphoenolpyruvate (PEP)-utilizing protein and pyruvate-phosphate dikinase were involved in the HpdA activity, and the presence of the gene cluster 3hpd was discovered in the genomes of diverse microbial strains. Our findings provide a better understanding of the microbial degradation of pyridine derivatives in nature and indicated that further research on the origin of the discovered four-component dehydrogenase with a separate SRPBCC domain and the function of PEP-utilizing protein and pyruvate-phosphate dikinase might be of great significance.IMPORTANCE 3-Hydroxypyridine is an important building block for the synthesis of drugs, herbicides, and antibiotics. Although the microbial degradation of 3-hydroxypyridine has been studied for many years, the molecular mechanisms remain unclear. Here, we show that 3hpd is responsible for the catabolism of 3-hydroxypyridine. The 3hpd gene cluster was found to be widespread in Actinobacteria, Rubrobacteria, Thermoleophilia, and Alpha-, Beta-, and Gammaproteobacteria, and the genetic organization of the 3hpd gene clusters in these bacteria shows high diversity. Our findings provide new insight into the catabolism of 3-hydroxypyridine in bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Familia de Multigenes , Oxidorreductasas/genética , Piridinas/metabolismo , Rhizobiaceae/genética , Proteínas Bacterianas/metabolismo , Catálisis , Oxidorreductasas/metabolismo , Rhizobiaceae/metabolismo
11.
Environ Res ; 183: 109258, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32311908

RESUMEN

Nicotine, the major alkaloid in tobacco, is a toxic, carcinogenic, and addictive compound. In recent years, nicotine catabolism in prokaryotes, including the catabolic pathways for its degradation and the catabolic genes that encode the enzymes of these pathways, have been systemically investigated. In this review, the three known pathways for nicotine catabolism in bacteria are summarized: the pyridine pathway, the pyrrolidine pathway, and a variation of the pyridine and pyrrolidine pathway (VPP pathway). The three nicotine catabolic pathways appear to have evolved separately in three distantly related lineages of bacteria. However, the general mechanism for the breakdown of the nicotine molecule in all three pathways is conserved and can be divided into six major enzymatic steps or catabolic modules that involve hydroxylation of the pyridine ring, dehydrogenation of the pyrrolidine ring, cleavage of the side chain, cleavage of the pyridine ring, dehydrogenation of the side chain, and deamination of pyridine ring-lysis products. In addition to summarizing our current understanding of nicotine degradation pathways, we identified several potential nicotine-degrading bacteria whose genome sequences are in public databases by comparing the sequences of conserved catabolic enzymes. Finally, several uncharacterized genes that are colocalized with nicotine degradation genes and are likely to be involved in nicotine catabolism, including regulatory genes, methyl-accepting chemotaxis protein genes, transporter genes, and cofactor genes are discussed. This review provides a comprehensive overview of the catabolism of nicotine in prokaryotes and highlights aspects of the process that still require additional research.


Asunto(s)
Bacterias , Nicotiana , Nicotina , Bacterias/metabolismo , Proteínas Bacterianas , Nicotina/metabolismo
12.
J Bacteriol ; 201(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692170

RESUMEN

Picolinic acid (PA), a typical C-2-carboxylated pyridine derivative, is a metabolite of l-tryptophan and many other aromatic compounds in mammalian and microbial cells. Microorganisms can degrade and utilize PA for growth. However, the precise mechanism of PA metabolism remains unknown. Alcaligenes faecalis strain JQ135 utilizes PA as its carbon and nitrogen source for growth. In this study, we screened a 6-hydroxypicolinic acid (6HPA) degradation-deficient mutant through random transposon mutagenesis. The mutant hydroxylated 6HPA into an intermediate, identified as 3,6-dihydroxypicolinic acid (3,6DHPA), with no further degradation. A novel decarboxylase, PicC, was identified to be responsible for the decarboxylation of 3,6DHPA to 2,5-dihydroxypyridine. Although, PicC belonged to the amidohydrolase 2 family, it shows low similarity (<45%) compared to other reported amidohydrolase 2 family decarboxylases. Moreover, PicC was found to form a monophyletic group in the phylogenetic tree constructed using PicC and related proteins. Further, the genetic deletion and complementation results demonstrated that picC was essential for PA degradation. The PicC was Zn2+-dependent nonoxidative decarboxylase that can specifically catalyze the irreversible decarboxylation of 3,6DHPA to 2,5-dihydroxypyridine. The Km and kcat toward 3,6DHPA were observed to be 13.44 µM and 4.77 s-1, respectively. Site-directed mutagenesis showed that His163 and His216 were essential for PicC activity. This study provides new insights into the microbial metabolism of PA at molecular level.IMPORTANCE Picolinic acid is a natural toxic pyridine derived from l-tryptophan metabolism and other aromatic compounds in mammalian and microbial cells. Microorganisms can degrade and utilize picolinic acid for their growth, and thus a microbial degradation pathway of picolinic acid has been proposed. Picolinic acid is converted into 6-hydroxypicolinic acid, 3,6-dihydroxypicolinic acid, and 2,5-dihydroxypyridine in turn. However, there was no physiological and genetic validation for this pathway. This study demonstrated that 3,6-dihydroxypicolinic acid was an intermediate in picolinic acid catabolism and further identified and characterized a novel amidohydrolase 2 family decarboxylase PicC. PicC was also shown to catalyze the decarboxylation of 3,6-dihydroxypicolinic acid into 2,5-dihydroxypyridine. This study provides a basis for understanding picolinic acid degradation and its underlying molecular mechanism.


Asunto(s)
Alcaligenes faecalis/enzimología , Carboxiliasas/aislamiento & purificación , Carboxiliasas/metabolismo , Ácidos Picolínicos/metabolismo , Alcaligenes faecalis/genética , Carboxiliasas/genética , Coenzimas/metabolismo , Elementos Transponibles de ADN , Pruebas Genéticas , Cinética , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Filogenia , Homología de Secuencia de Aminoácido , Zinc/metabolismo
13.
J Bacteriol ; 201(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31160400

RESUMEN

Picolinic acid (PA) is a natural toxic pyridine derivative. Microorganisms can degrade and utilize PA for growth. However, the full catabolic pathway of PA and its physiological and genetic foundation remain unknown. In this study, we identified a gene cluster, designated picRCEDFB4B3B2B1A1A2A3, responsible for the degradation of PA from Alcaligenes faecalis JQ135. Our results suggest that PA degradation pathway occurs as follows: PA was initially 6-hydroxylated to 6-hydroxypicolinic acid (6HPA) by PicA (a PA dehydrogenase). 6HPA was then 3-hydroxylated by PicB, a four-component 6HPA monooxygenase, to form 3,6-dihydroxypicolinic acid (3,6DHPA), which was then converted into 2,5-dihydroxypyridine (2,5DHP) by the decarboxylase PicC. 2,5DHP was further degraded to fumaric acid through PicD (2,5DHP 5,6-dioxygenase), PicE (N-formylmaleamic acid deformylase), PicF (maleamic acid amidohydrolase), and PicG (maleic acid isomerase). Homologous pic gene clusters with diverse organizations were found to be widely distributed in Alpha-, Beta-, and Gammaproteobacteria Our findings provide new insights into the microbial catabolism of environmental toxic pyridine derivatives.IMPORTANCE Picolinic acid is a common metabolite of l-tryptophan and some aromatic compounds and is an important intermediate in organic chemical synthesis. Although the microbial degradation/detoxification of picolinic acid has been studied for over 50 years, the underlying molecular mechanisms are still unknown. Here, we show that the pic gene cluster is responsible for the complete degradation of picolinic acid. The pic gene cluster was found to be widespread in other Alpha-, Beta-, and Gammaproteobacteria These findings provide a new perspective for understanding the catabolic mechanisms of picolinic acid in bacteria.


Asunto(s)
Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Proteínas Bacterianas/metabolismo , Familia de Multigenes , Ácidos Picolínicos/metabolismo , Alcaligenes faecalis/química , Alcaligenes faecalis/enzimología , Proteínas Bacterianas/genética , Biodegradación Ambiental , Redes y Vías Metabólicas , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Ácidos Picolínicos/química
14.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31585997

RESUMEN

c-Type cytochromes (cyts c) are proteins that contain covalently bound heme and that thus require posttranslational modification for activity, a process carried out by the cytochrome c (cyt c) maturation system (referred to as the Ccm system) in many Gram-negative bacteria. It has been established that during cyt c maturation (CCM), two cysteine thiols of the heme binding motif (CXXCH) within apocytochromes c (apocyts c) are first oxidized largely by DsbA to form a disulfide bond, which is later reduced through a thio-reductive pathway involving DsbD. However, the physiological impacts of DsbA proteins on CCM in fact vary significantly among bacteria. In this work, we used the cyt c-rich Gram-negative bacterium Shewanella oneidensis as the research model to clarify the roles of DsbA proteins in CCM. We show that in terms of the oxidation of apocyts c, DsbA proteins are an important but not critical factor, and, strikingly, oxygen is not either. By exploiting the DsbD-independent pathway, we identify DsbA1, DsbA2, and DsbA3 as oxidants contributing to the oxidation of apocyts c and reductants, such as cysteine, to be an effective antagonist against DsbA-independent oxidation. We further show that DsbB proteins are partially responsible for the reoxidization of reduced DsbA proteins. Overall, our results indicate that the DsbA-DsbB redox pair has a limited role in CCM, challenging the established notion that it is the main oxidant for apocyts cIMPORTANCE DsbA is a powerful oxidase that functions in the bacterial periplasm to introduce disulfide bonds in many proteins, including apocytochromes c It has been well established that although DsbA is not essential, it plays a primary role in cytochrome c maturation, based on studies in bacteria hosting several cyts c Here, with cyt c-rich S. oneidensis as a research model, we show that this is not always the case. Moreover, we demonstrate that DsbB is also not essential for cytochrome c maturation. These results underscore the need to identify oxidants other than DsbA/DsbB that are crucial in the oxidation of apocyts c in bacteria.


Asunto(s)
Bacterias/metabolismo , Citocromos c/metabolismo , Shewanella/metabolismo , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cisteína/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Mutagénesis , Mutación , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxígeno , Proteína Disulfuro Isomerasas/metabolismo , Shewanella/enzimología , Shewanella/genética
15.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375492

RESUMEN

Bacterial consortia are among the most basic units in the biodegradation of environmental pollutants. Pollutant-degrading strains frequently encounter different types of environmental stresses and must be able to survive with other bacteria present in the polluted environments. In this study, we proposed a noncontact interaction mode between a tetrahydrofuran (THF)-degrading strain, Rhodococcus ruber YYL, and a non-THF-degrading strain, Bacillus cereus MLY1. The metabolic interaction mechanism between strains YYL and MLY1 was explored through physiological and molecular studies and was further supported by the metabolic response profile of strain YYL, both monocultured and cocultured with strain MLY1 at the optimal pH (pH 8.3) and under pH stress (pH 7.0), through a liquid chromatography-mass spectrometry-based metabolomic analysis. The results suggested that the coculture system resists pH stress in three ways: (i) strain MLY1 utilized acid metabolites and impacted the proportion of glutamine, resulting in an elevated intracellular pH of the system; (ii) strain MLY1 had the ability to degrade intermediates, thus alleviating the product inhibition of strain YYL; and (iii) strain MLY1 produced some essential micronutrients for strain YYL to aid the growth of this strain under pH stress, while strain YYL produced THF degradation intermediates for strain MLY1 as major nutrients. In addition, a metabolite cross-feeding interaction with respect to pollutant biodegradation is discussed.IMPORTANCERhodococcus species have been discovered in diverse environmental niches and can degrade numerous recalcitrant toxic pollutants. However, the pollutant degradation efficiency of these strains is severely reduced due to the complexity of environmental conditions and limitations in the growth of the pollutant-degrading microorganism. In our study, Bacillus cereus strain MLY1 exhibited strong stress resistance to adapt to various environments and improved the THF degradation efficiency of Rhodococcus ruber YYL by a metabolic cross-feeding interaction style to relieve the pH stress. These findings suggest that metabolite cross-feeding occurred in a complementary manner, allowing a pollutant-degrading strain to collaborate with a nondegrading strain in the biodegradation of various recalcitrant compounds. The study of metabolic exchanges is crucial to elucidate mechanisms by which degrading and symbiotic bacteria interact to survive environmental stress.


Asunto(s)
Bacillus cereus/metabolismo , Biodegradación Ambiental , Furanos/metabolismo , Interacciones Microbianas , Rhodococcus/metabolismo , Estrés Fisiológico , Contaminantes Ambientales/metabolismo , Concentración de Iones de Hidrógeno
16.
Biodegradation ; 30(5-6): 467-479, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31463639

RESUMEN

Tetrahydrofuran (THF) is a ubiquitous toxic and carcinogenic pollutant. Screening for pure or mixed-culture microorganisms that can efficiently degrade THF is difficult due to its chemical stability. In this study, an enrichment culture, H-1, with a stable THF-degrading ability and microbial community structure was enriched from activated sludge and could efficiently degrade 95% of 40 mM THF within 6 days. The optimal THF degradation conditions for H-1 were an initial pH of 7.0-8.0 and a temperature of 30 °C. The substrate tolerance concentration of H-1 reached 200 mM. Heavy metals tolerance concentrations of Cu2+, Cd2+ and Pb2+ of H-1 was 0.5 mM, 0.4 mM and 0.03 mM, and 4 mM Mn2+ did not significantly influence the THF degradation ratio or biomass of H-1. H-1 might be a good material for actual wastewater treatment because of its efficient THF degradation performance and ability to resist various stressful conditions. In addition, the THF-degrading efficiency of H-1 was enhanced by the addition of moderate carbon sources. High-throughput sequencing of the 16S rRNA gene showed that Rhodococcus sp. (a potential THF-degrading strain) and Hydrogenophaga sp. (a potential non-THF-degrading strain) were the dominant microorganisms in the H-1 culture. These results indicate the potential coexistence of cooperation and competition between THF-degrading bacteria and nondegrading bacteria in this enrichment culture.


Asunto(s)
Furanos , Rhodococcus , Biodegradación Ambiental , ARN Ribosómico 16S , Aguas del Alcantarillado
17.
Appl Microbiol Biotechnol ; 102(23): 10171-10181, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30229322

RESUMEN

Sphingomonas melonis TY utilizes nicotine as a sole source of carbon, nitrogen, and energy to grow. One of the genes in its ndp catabolic cluster, ndpT, encodes a hypothetical transporter. Since no transporter for nicotine has been identified in microorganisms, we investigated whether NdpT is responsible for nicotine transport. ndpT was induced by nicotine, and gene knockout and complementation studies clearly indicated that ndpT is essential for the catabolism of nicotine in strain TY. NdpT-GFP was located at the periphery of the cells, suggesting that NdpT is a membrane protein. Uptake assays with L-[14C] nicotine illustrated that nicotine uptake in strain TY is mediated by a constitutively synthesized permease with a Km of 0.362 ± 0.07 µM and a Vmax of 0.762 ± 0.068 µmol min-1 (mg cell dry weight)-1 and that ndpT may play a role in nicotine exclusion. Hence, we consider NdpT a nicotine catabolism-related protein.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/genética , Nicotina/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Proteínas Bacterianas/metabolismo , Biotransformación , Carbono/metabolismo , Técnicas de Inactivación de Genes , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/metabolismo , Nitrógeno/metabolismo
18.
Neurochem Res ; 42(7): 1904-1918, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28303498

RESUMEN

The successful identification of promising investigational therapies for the treatment of epilepsy can be credited to the use of numerous animal models of seizure and epilepsy for over 80 years. In this time, the maximal electroshock test in mice and rats, the subcutaneous pentylenetetrazol test in mice and rats, and more recently the 6 Hz assay in mice, have been utilized as primary models of electrically or chemically-evoked seizures in neurologically intact rodents. In addition, rodent kindling models, in which chronic network hyperexcitability has developed, have been used to identify new agents. It is clear that this traditional screening approach has greatly expanded the number of marketed drugs available to manage the symptomatic seizures associated with epilepsy. In spite of the numerous antiseizure drugs (ASDs) on the market today, the fact remains that nearly 30% of patients are resistant to these currently available medications. To address this unmet medical need, the National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP) revised its approach to the early evaluation of investigational agents for the treatment of epilepsy in 2015 to include a focus on preclinical approaches to model pharmacoresistant seizures. This present report highlights the in vivo and in vitro findings associated with the initial pharmacological validation of this testing approach using a number of mechanistically diverse, commercially available antiseizure drugs, as well as several probe compounds that are of potential mechanistic interest to the clinical management of epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Evaluación Preclínica de Medicamentos/normas , Epilepsia Refractaria/tratamiento farmacológico , Animales , Evaluación Preclínica de Medicamentos/métodos , Epilepsia Refractaria/inducido químicamente , Epilepsia Refractaria/etiología , Electrochoque/efectos adversos , Ácido Kaínico/toxicidad , Excitación Neurológica/efectos de los fármacos , Excitación Neurológica/fisiología , Masculino , Ratones , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
19.
Toxicol Appl Pharmacol ; 293: 1-9, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26780399

RESUMEN

4-Epi-oxytetracycline (4-EOTC), one of main oxytetracycline (OTC) metabolites, can be commonly detected in food and environment. The toxicity and effects of OTC on animals have been well characterized; however, its metabolites have never been studied systemically. This study aims to investigate 15-day oral dose toxicity and urine metabonomics changes of 4-EOTC after repeated administration in Wistar rats at daily doses of 0.5, 5.0 and 50.0mg/kg bw (bodyweight). Hematology and clinical chemistry parameters, including white blood cell count, red blood cell count, total protein, globulin and albumin/globulin, were obviously altered in rats of 5.0 and 50.0mg/kg bw. Histopathology changes of kidney and liver tissues were also observed in high-dose groups. Urinary metabolites from all groups were analyzed using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Seventeen metabolites contributing to the clusters were identified as potential biomarkers from multivariate analysis, including aminoadipic acid, 6-phosphogluconate, sebacic acid, pipecolic acid, etc. The significant changes of these biomarkers demonstrated metabonomic variations in treated rats, especially lysine and purine metabolism. For the first time in this paper, we combined the results of toxicity and metabonomics induced by 4-EOTC for the serious reconsideration of the safety and potential risks of antibiotics and its degradation metabolites.


Asunto(s)
Antibacterianos/toxicidad , Tetraciclinas/toxicidad , Animales , Antibacterianos/farmacocinética , Antibacterianos/orina , Cromatografía Líquida de Alta Presión , Femenino , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Lisina/metabolismo , Masculino , Espectrometría de Masas , Metabolómica , Purinas/metabolismo , Ratas Wistar , Tetraciclinas/farmacocinética , Tetraciclinas/orina , Pruebas de Toxicidad Subaguda
20.
Appl Microbiol Biotechnol ; 100(23): 10019-10029, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27568381

RESUMEN

Nornicotine is a natural alkaloid produced by plants in the genus Nicotiana and is structurally related to nicotine. Importantly, nornicotine is the direct precursor of tobacco-specific nitrosamine N'-nitrosonornicotine, which is a highly potent human carcinogen. Microbial detoxification and degradation of nicotine have been well characterized; however, until now, there has been no information on the molecular mechanism of nornicotine degradation. In this study, we demonstrate the transformation of nornicotine by the nicotine-degrading strain Shinella sp. HZN7. Three transformation products were identified as 6-hydroxy-nornicotine, 6-hydroxy-myosmine, and 6-hydroxy-pseudooxy-nornicotine by UV spectroscopy, high-resolution mass spectrometry, nuclear magnetic resonance, and Fourier transform-infrared spectroscopy analyses. The two-component nicotine dehydrogenase genes nctA1 and nctA2 were cloned, and their product, NctA, was confirmed to be responsible for the conversion of nornicotine into 6-hydroxy-nornicotine as well as nicotine into 6-hydroxy-nicotine. The 6-hydroxy-nicotine oxidase, NctB, catalyzed the oxidation of 6-hydroxy-nornicotine to 6-hydroxy-myosmine, and it spontaneously hydrolyzed into 6-hydroxy-pseudooxy-nornicotine. However, 6-hydroxy-pseudooxy-nornicotine could not be further degraded by strain HZN7. This study demonstrated that nornicotine is partially transformed by strain HZN7 via nicotine degradation pathway.


Asunto(s)
Alcaloides/metabolismo , Insecticidas/metabolismo , Nicotina/análogos & derivados , Rhizobiaceae/metabolismo , Biotransformación , Clonación Molecular , Nicotina/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Rhizobiaceae/enzimología , Rhizobiaceae/genética , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA