Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 24(7)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987247

RESUMEN

Infectious diseases, especially pathogenic infections, are a growing threat to public health worldwide. Since pathogenic bacteria usually exist in complex matrices at very low concentrations, the development of technology for rapid, convenient, and biocompatible sample enrichment is essential for sensitive diagnostics. In this study, a cucurbit[6]uril (CB) supermolecular decorated amine-functionalized diatom (DA) composite was fabricated to support efficient sample enrichment and in situ nucleic acid preparation from enriched pathogens and cells. CB was introduced to enhance the rate and effectiveness of pathogen absorption using the CB-DA composite. This novel CB-DA composite achieved a capture efficiency of approximately 90% at an Escherichia coli concentration of 106 CFU/mL within 3 min. Real-time PCR analyses of DNA samples recovered using the CB-DA enrichment system showed a four-fold increase in the early amplification signal strength, and this effective method for capturing nucleic acid might be useful for preparing samples for diagnostic systems.


Asunto(s)
Materiales Biocompatibles , Nanocompuestos , Manejo de Especímenes , Materiales Biocompatibles/química , Línea Celular Tumoral , Diatomeas/química , Humanos , Compuestos Macrocíclicos/química , Técnicas Microbiológicas , Nanocompuestos/química , Nanocompuestos/ultraestructura , Ácidos Nucleicos/química , Ácidos Nucleicos/aislamiento & purificación , Manejo de Especímenes/métodos
2.
Adv Sci (Weinh) ; : e2404272, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953411

RESUMEN

The phenomenon of flexoelectricity, wherein mechanical deformation induces alterations in the electron configuration of metal oxides, has emerged as a promising avenue for regulating electron transport. Leveraging this mechanism, stress sensing can be optimized through precise modulation of electron transport. In this study, the electron transport in 2D ultra-smooth In2O3 crystals is modulated via flexoelectricity. By subjecting cubic In2O3 (c-In2O3) crystals to significant strain gradients using an atomic force microscope (AFM) tip, the crystal symmetry is broken, resulting in the separation of positive and negative charge centers. Upon applying nano-scale stress up to 100 nN, the output voltage and power values reach their maximum, e.g. 2.2 mV and 0.2 pW, respectively. The flexoelectric coefficient and flexocoupling coefficient of c-In2O3 are determined as ≈0.49 nC m-1 and 0.4 V, respectively. More importantly, the sensitivity of the nano-stress sensor upon c-In2O3 flexoelectric effect reaches 20 nN, which is four to six orders smaller than that fabricated with other low dimensional materials based on the piezoresistive, capacitive, and piezoelectric effect. Such a deformation-induced polarization modulates the band structure of c-In2O3, significantly reducing the Schottky barrier height (SBH), thereby regulating its electron transport. This finding highlights the potential of flexoelectricity in enabling high-performance nano-stress sensing through precise control of electron transport.

3.
Nanoscale ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887082

RESUMEN

The rise of two-dimensional (2D) materials has provided a confined geometry and yielded methods for guiding electrons at the nanoscale level. 2D material-enabled electronic devices can interact and transduce the subtle charge perturbation and permit significant advancement in molecule discrimination technology with high accuracy, sensitivity, and specificity, leaving a significant impact on disease diagnosis and health monitoring. However, high-performance biosensors with scalable fabrication ability and simple protocols have yet to be fully realized due to the challenges in wafer-scale 2D film synthesis and integration with electronics. Here, we propose a molybdenum oxide (MoOx)-interdigitated electrode (IDE)-based label-free biosensing chip, which stands out for its wafer-scale dimension, tunability, ease of integration and compatibility with the complementary metal-oxide-semiconductor (CMOS) fabrication. The device surface is biofunctionalized with monoclonal anti-carcinoembryonic antigen antibodies (anti-CEA) via the linkage agent (3-aminopropyl)triethoxysilane (APTES) for carcinoembryonic antigen (CEA) detection and is characterized step-by-step to reveal the working mechanism. A wide range and real-time response of the CEA concentration from 0.1 to 100 ng mL-1 and a low limit of detection (LOD) of 0.015 ng mL-1 were achieved, meeting the clinical requirements for cancer diagnosis and prognosis in serum. The MoOx-IDE biosensor also demonstrates strong surface affinity towards molecules and high selectivity using L-cysteine (L-Cys), glycine (Gly), glucose (Glu), bovine serum albumin (BSA), and immunoglobulin G (IgG). This study showcases a simple, scalable, and low-cost strategy to create a nanoelectronic biosensing platform to achieve high-performance cancer biomarker discrimination capabilities.

4.
J Colloid Interface Sci ; 629(Pt B): 960-969, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36208608

RESUMEN

Non-precious metals have been considered as suitable alternatives for high-performance hydrogen evolution reactions (HER). Although the incorporation of carbon substances is shown to improve the number of active sites, electron transfer pathways, and long-term stability, there have been rare reports on their single-step scalable production. Herein, we realize free-standing two-dimensional (2D) carbon sheets heterostructured with nickel (Ni) nanocatalysts by pyrolyzing ultrathin layers of acetate tetrahydrate (i.e. the single precursor for both Ni and C sources) over water-soluble salt crystals. Such a salt-templated methodology is environmentally friendly and readily scalable without the implementation of sophisticated equipment. The resulting 2D carbon sheets exhibit an average small thickness of âˆ¼ 3 nm and lateral dimensions with tens of micrometers, where a large number of nano-sized Ni particles with an average diameter of 14 nm are uniformly dispersed. Such 2D Ni-C sheets demonstrate a small overpotential of 111 mV at 10 mA/cm2 and a low Tafel slope of 86 mV/dec for HER in 1 M KOH, which is significantly improved over those of reported non-precious metals composited with carbon substances. This work offers new insight into the design and practical production of non-precious metal matrixes for economical HER.

5.
Sci Rep ; 10(1): 443, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949259

RESUMEN

Herein, we describe the synthesis of highly water-dispersible and biocompatible 3D adsorbents via a rapid two-step strategy employing a mesoporous magnetic nanomulberry-shaped Fe3O4 (MNM) on diatomaceous earth (DE) and cucurbituril (CB; MNM-DE-CB). Coating of CB on the surface of MNM-DE via hydrogen bonds not only enhanced the dispersibility of CB, but also improved the stability of MNM-DE. The ability of the adsorbent to remove dyes from water was investigated as a function of metal ions, solution pH, temperature, and concentration to determine optimum reaction conditions. Unlike MNM-DE, MNM-DE-CB exhibited highly efficient, rapid dye removal and recyclability in aqueous solution, and low cytotoxicity toward cancer cells in drug delivery tests. MNM-DE-CB is a promising green adsorbent with potential for diverse applications including water remediation, interface catalysis, bio-sample preparation, and drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA