Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Kidney Int ; 106(3): 450-469, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38821447

RESUMEN

Unlike classical protein kinase A, with separate catalytic and regulatory subunits, EPACs are single chain multi-domain proteins containing both catalytic and regulatory elements. The importance of cAMP-Epac-signaling as an energy provider has emerged over the last years. However, little is known about Epac1 signaling in chronic kidney disease. Here, we examined the role of Epac1 during the progression of glomerulonephritis (GN). We first observed that total genetic deletion of Epac1 in mice accelerated the progression of nephrotoxic serum (NTS)-induced GN. Next, mice with podocyte-specific conditional deletion of Epac1 were generated and showed that NTS-induced GN was exacerbated in these mice. Gene expression analysis in glomeruli at the early and late phases of GN showed that deletion of Epac1 in podocytes was associated with major alterations in mitochondrial and metabolic processes and significant dysregulation of the glycolysis pathway. In vitro, Epac1 activation in a human podocyte cell line increased mitochondrial function to cope with the extra energy demand under conditions of stress. Furthermore, Epac1-induced glycolysis and lactate production improved podocyte viability. To verify the in vivo therapeutic potential of Epac1 activation, the Epac1 selective cAMP mimetic 8-pCPT was administered in wild type mice after induction of GN. 8-pCPT alleviated the progression of GN by improving kidney function with decreased structural injury with decreased crescent formation and kidney inflammation. Importantly, 8-pCPT had no beneficial effect in mice with Epac1 deletion in podocytes. Thus, our data suggest that Epac1 activation is an essential protective mechanism in GN by reprogramming podocyte metabolism. Hence, targeting Epac1 activation could represent a potential therapeutic approach.


Asunto(s)
AMP Cíclico , Glomerulonefritis , Factores de Intercambio de Guanina Nucleótido , Reprogramación Metabólica , Podocitos , Animales , Humanos , Masculino , Ratones , Línea Celular , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo Energético/efectos de los fármacos , Glomerulonefritis/patología , Glomerulonefritis/metabolismo , Glomerulonefritis/genética , Glomerulonefritis/prevención & control , Glucólisis , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Podocitos/metabolismo , Podocitos/patología , Transducción de Señal
2.
Pediatr Blood Cancer ; 71(1): e30753, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37899699

RESUMEN

For children with cancer, blood product transfusions are crucial, but can be complicated by transfusion reactions. To prevent these complications, premedication is often given, although not always evidence-based. Herein, we describe a significant decrease in the use of premedication (72%-28%) at our institution after the implementation of standardized guidelines, without an increase in transfusion reactions (3.2% prior vs. 1.5% after standardization). Importantly, there were no severe transfusion reactions leading to hospitalization or death. Our results provide evidence in favor of more judicious use of premedication prior to transfusions in patients 21 years and younger being treated for cancer.


Asunto(s)
Neoplasias , Reacción a la Transfusión , Niño , Humanos , Mejoramiento de la Calidad , Transfusión Sanguínea , Neoplasias/terapia , Premedicación
3.
Mem Inst Oswaldo Cruz ; 119: e230173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38324879

RESUMEN

BACKGROUND: The incidence of visceral leishmaniasis (VL) has increased in the Southern region of Brazil in recent years, especially in the State of Paraná. New species have been suggested with potential to act as vector in VL endemic areas. OBJECTIVES: Identify the Leishmania species in sand fly specimens collected from 2016 to 2018 in the municipality of Itaperuçu, Vale do Ribeira, Paraná, Brazil. METHODS: Light traps were used for collections and for the analysis of sand fly were used the multiplex polymerase chain reaction (PCR) methodology and subsequent sequencing. FINDINGS: Among the collected specimens, 88.62% were attributed to the species Nyssomyia neivai, which were grouped into 176 pools. Three positive pools were detected: two with Leishmania (Viannia) braziliensis and one with L. (Leishmania) infantum. The positivity rate for the parasite was 0.25% based on the presence of at least one infected insect in the pool. MAIN CONCLUSIONS: The detection of L. infantum in Ny. neivai draws attention due to its abundance and anthropophily in the State of Paraná. Moreover, this finding is considered as an alert and suggests that the vector competence of Ny. neivai and the criteria for its incrimination should be carried out, given its wide distribution in southern of Brazil.


Asunto(s)
Leishmania braziliensis , Leishmania infantum , Leishmaniasis Visceral , Phlebotomus , Psychodidae , Animales , Leishmania infantum/genética , Brasil/epidemiología , Psychodidae/parasitología , Leishmania braziliensis/genética , ADN
4.
Can Assoc Radiol J ; 75(1): 178-186, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37563785

RESUMEN

PURPOSE: The purpose of this study was to compare the technical success rate, the selectivity of transarterial chemoembolisation (TACE), the complication rate, the radiation dose given to the patients and the hospitalization stay between TACE performed using femoral artery approach (FAA) and TACE performed using radial artery approach (RAA) in patients with hepatocellular carcinoma (HCC). METHODS: Between June 2020 and April 2022, 49 patients with HCC who underwent 116 TACEs (75 using FAA and 41 using RAA) were included. Differences in technical success rate, selectivity of micro-catheterization, radiation dose given to the patients, fluoroscopy time, hospitalization stay duration, and complication rate were compared between FAA and RAA using Fisher exact or Student t tests. RESULTS: No differences in technical success rates were found between RAA (93%; 39/41 TACEs) and FAA (100%; 75/75 TACEs) (P = .12). There were no differences between the two groups in terms of selectivity of catheterization, radiation dose, fluoroscopy time and hospitalization stay duration. Five patients had Grade 2 complications (hematoma) after FAA vs. one patient with one Grade 1 complication (radial artery occlusion) after RAA (5/75 [7%] vs. 1/41 [2%], respectively; P = .42). No major arterial access site complications occurred with FAA or RAA. CONCLUSIONS: This study confirms that RAA is a safe approach that does not compromise the technical efficacy and the selectivity of TACE compared to FAA in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Arteria Femoral , Resultado del Tratamiento , Quimioembolización Terapéutica/efectos adversos , Arteria Radial , Estudios Retrospectivos
5.
Genet Mol Biol ; 47(3): e20230346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136577

RESUMEN

Bovine papillomavirus (BPV) infects cattle cells worldwide, leading to hyperproliferative lesions and the potential development of cancer, driven by E5, E6, and E7 oncoproteins along with other cofactors. E6 oncoprotein binds experimentally to various proteins, primarily paxillin and MAML1, as well as hMCM7 and CBP/p300. However, the molecular and structural mechanisms underlying BPV-induced malignant transformation remain unclear. Therefore, we have modeled the E6 oncoprotein structure from non-oncogenic BPV-5 and compared them with oncogenic BPV-1 to assess the relationship between structural features and oncogenic potential. Our analysis elucidated crucial structural aspects of E6, highlighting both conserved elements across genotypes and genotype-specific variations potentially implicated in the oncogenic process, particularly concerning primary target interactions. Additionally, we predicted the location of the hMCM7 binding site on the N-terminal of BPV-5 E6. This study enhances our understanding of the structural characteristics of BPV E6 oncoproteins and their interactions with host proteins, clarifying structural differences and similarities between high and low-risk BPVs. This is important to understand better the mechanisms involved in cell transformation in BPV infection, which could be used as a possible target for therapy.

6.
Toxicol Appl Pharmacol ; 474: 116609, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392997

RESUMEN

BACKGROUND: Arrhythmias are one manifestation of the cardiotoxicity that results from doxorubicin (Doxo) administration. Although cardiotoxicity is an anticipated outcome in anticancer therapies, there is still a lack of treatment options available for its effective management. This study sought to evaluate the possible cardioprotective effect of complex d-limonene (DL) plus hydroxypropyl-ß-cyclodextrin (HßDL) during treatment with Doxo, focusing on the arrhythmic feature. METHODS: Cardiotoxicity was induced in Swiss mice with Doxo 20 mg/kg, with 10 mg/kg of HßDL being administered 30 min before the Doxo. Plasma CK-MB and LDH levels were analyzed. Cellular excitability and susceptibility to cardiac and cardiomyocyte arrhythmias were evaluated using in vivo (pharmacological cardiac stress) and in vitro (burst pacing) ECG protocols. Ca2+ dynamics were also investigated. The expression of CaMKII and its activation by phosphorylation and oxidation were evaluated by western blot, and molecular docking was used to analyze the possible interaction between DL and CaMKII. RESULTS: Electrocardiograms showed that administration of 10 mg/kg of HßDL prevented Doxo-induced widening of the QRS complex and QT interval. HßDL also prevented cardiomyocyte electrophysiological changes that trigger cellular arrhythmias, such as increases in action potential duration and variability; decreased the occurrence of delayed afterdepolarizations (DADs) and triggered activities (TAs), and reduced the incidence of arrhythmia in vivo. Ca2+ waves and CaMKII overactivation caused by phosphorylation and oxidation were also decreased. In the in silico study, DL showed potential inhibitory interaction with CaMKII. CONCLUSION: Our results show that 10 mg/kg of ßDL protects the heart against Doxo-induced cardiotoxicity arrhythmias, and that this is probably due to its inhibitory effect on CaMKII hyperactivation.


Asunto(s)
Calcio , Ciclodextrinas , Ratones , Animales , Limoneno/efectos adversos , Limoneno/metabolismo , Calcio/metabolismo , Cardiotoxicidad/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Simulación del Acoplamiento Molecular , Doxorrubicina/efectos adversos , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/prevención & control , Arritmias Cardíacas/metabolismo , Miocitos Cardíacos
7.
Cytotherapy ; 25(9): 977-985, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37330731

RESUMEN

BACKGROUND AIMS: CD4 immune reconstitution (IR) after allogeneic hematopoietic cell transplant (allo-HCT) correlates with lower non-relapse mortality (NRM), but its impact on leukemia relapse remains less clear, especially in children. We studied the correlation between IR of lymphocyte subsets and HCT outcomes in a large cohort of children/young adults with hematological malignancies. METHODS: We retrospectively analyzed CD4, CD8, B-cell and natural killer (NK) cell reconstitution in patients after first allo-HCT for a hematological malignancy at three large academic institutions (n = 503; period 2008-2019). We used Cox proportional hazard and Fine-Gray competing risk models, martingale residual plots and maximally selected log-rank statistics to assess the impact of IR on outcomes. RESULTS: Achieving CD4 >50 and/or B cells >25 cells/µL before day 100 after allo-HCT was a predictor of lower NRM (CD4 IR: hazard ratio [HR] 0.26, 95% confidence interval [CI] 0.11-0.62, P = 0.002; CD4 and B cell IR: HR 0.06, 95% CI 0.03-0.16, P < 0.001), acute graft-versus-host disease (GVHD) (CD4 and B cell IR: HR 0.02, 95% CI 0.01-0.04, P < 0.001) and chronic GVHD (CD4 and B cell IR: HR 0.16, 95% CI 0.05-0.49, P = 0.001) in the full cohort, and of lower risk of relapse (CD4 and B cell IR: HR 0.24, 95% CI 0.06-0.92, P = 0.038) in the acute myeloid leukemia subgroup. No correlation between CD8 and NK-cell IR and relapse or NRM was found. CONCLUSIONS: CD4 and B-cell IR was associated with clinically significant lower NRM, GVHD and, in patients with acute myeloid leukemia, disease relapse. CD8 and NK-cell IR was neither associated with relapse nor NRM. If confirmed in other cohorts, these results can be easily implemented for risk stratification and clinical decision making.


Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Reconstitución Inmune , Leucemia Mieloide Aguda , Niño , Adulto Joven , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Estudios Retrospectivos , Trasplante Homólogo , Enfermedad Injerto contra Huésped/etiología , Neoplasias Hematológicas/terapia
8.
Age Ageing ; 52(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505993

RESUMEN

BACKGROUND: Vitality is conceptually considered as the underlying capacity influencing other intrinsic capacity (IC) domains and being related to nutrition, physiological reserve and biological ageing. However, there is no consensus on its operationalisation. OBJECTIVE: To investigate the structure and magnitude of the association of vitality with other IC domains and functional difficulties using three operational definitions of vitality. METHODS: We included 1,389 older adults from the Multidomain Alzheimer Preventive Trial with data on Mini Nutritional Assessment (MNA), handgrip strength and plasma biomarkers (comprising inflammatory and mitochondrial markers). Using path analysis, we examined the effects of vitality on difficulties in basic and instrumental activities of daily living (ADL and IADL) exerted directly and indirectly through the mediation of other IC domains: cognition, locomotion, psychological, vision and hearing. We further explored the longitudinal association of vitality with IC domains, ADL and IADL over 4 years using linear mixed-effect regression. RESULTS: We observed significant indirect effects of vitality on IADL, mainly through cognitive, locomotor and psychological domains, regardless of the vitality measurement. Participants with higher vitality had fewer IADL difficulties at follow-up (MNA score: ß [95% CI] = -0.020 [-0.037, -0.003]; handgrip strength: -0.011 [-0.023, 0.000]; plasma biomarker-based index: -0.015 [-0.028, -0.002]). Vitality assessed with the plasma biomarker-based index predicted improved locomotion over time. CONCLUSION: Vitality was associated with disability primarily through the mediation of other IC domains. The three indicators examined are acceptable measurements of vitality; biomarkers might be more suitable for the early detection of locomotion decline.


Asunto(s)
Enfermedad de Alzheimer , Estado Nutricional , Humanos , Anciano , Actividades Cotidianas , Fuerza de la Mano/fisiología , Evaluación Geriátrica , Envejecimiento , Biomarcadores
9.
BMC Oral Health ; 23(1): 322, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231426

RESUMEN

BACKGROUND: Implant design and apical stability are principal parameters involved in achieving successful primary stability. Using polyurethane models to simulate post-extraction sockets, we investigated the effects of using differing blade designs on the primary stability of tapered implants and the impact of apical depth. METHOD: Six polyurethane blocks were used to simulate post-extraction pockets. One of the implants presented self-tapping blades (Group A), while the other (Group B) did not. Seventy-two implants were placed at 3 different depths (5 mm, 7 mm, and 9 mm), and a torque wrench was used to measure the stability of the implants. RESULTS: When evaluating the implants (placed at 5 mm, 7 mm, and 9 mm apical to the socket), we observed that the torque of the Group B implants was higher than that of Group A implants (P < 0.01). At the 9-mm depth, there was no difference between the groups (Drive GM 34.92 Ncm and Helix GM 32.33 Ncm) (P > 0.001), and considering the same implant groups, those placed at 7-mm and 9-mm depths presented higher torques (p < 0.01) than those placed at 5-mm (p > 0.01). CONCLUSION: Considering both groups, we concluded that an insertion depth of greater than 7 mm is needed for initial stability, and in situations involving reduced supportive bone tissue or low bone density, a non-self-tapping thread design improves implant stability.


Asunto(s)
Implantación Dental Endoósea , Implantes Dentales , Humanos , Poliuretanos , Alveolo Dental/cirugía , Atención Odontológica , Torque , Diseño de Prótesis Dental
10.
FASEB J ; 35(11): e21931, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34653285

RESUMEN

Energetic metabolism controls key steps of kidney development, homeostasis, and epithelial repair following acute kidney injury (AKI). Hepatocyte nuclear factor-1ß (HNF-1ß) is a master transcription factor that controls mitochondrial function in proximal tubule (PT) cells. Patients with HNF1B pathogenic variant display a wide range of kidney developmental abnormalities and progressive kidney fibrosis. Characterizing the metabolic changes in PT cells with HNF-1ß deficiency may help to identify new targetable molecular hubs involved in HNF1B-related kidney phenotypes and AKI. Here, we combined 1 H-NMR-based metabolomic analysis in a murine PT cell line with CrispR/Cas9-induced Hnf1b invalidation (Hnf1b-/- ), clustering analysis, targeted metabolic assays, and datamining of published RNA-seq and ChIP-seq dataset to identify the role of HNF-1ß in metabolism. Hnf1b-/- cells grown in normoxic conditions display intracellular ATP depletion, increased cytosolic lactate concentration, increased lipid droplet content, failure to use pyruvate for energetic purposes, increased levels of tricarboxylic acid (TCA) cycle intermediates and oxidized glutathione, and a reduction of TCA cycle byproducts, all features consistent with mitochondrial dysfunction and an irreversible switch toward glycolysis. Unsupervised clustering analysis showed that Hnf1b-/- cells mimic a hypoxic signature and that they cannot furthermore increase glycolysis-dependent energetic supply during hypoxic challenge. Metabolome analysis also showed alteration of phospholipid biosynthesis in Hnf1b-/- cells leading to the identification of Chka, the gene coding for choline kinase α, as a new putative target of HNF-1ß. HNF-1ß shapes the energetic metabolism of PT cells and HNF1B deficiency in patients could lead to a hypoxia-like metabolic state precluding further adaptation to ATP depletion following AKI.


Asunto(s)
Células Epiteliales/metabolismo , Eliminación de Gen , Glucólisis/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo , Homeostasis/genética , Túbulos Renales Proximales/citología , Transducción de Señal/genética , Lesión Renal Aguda/metabolismo , Animales , Sistemas CRISPR-Cas , Hipoxia de la Célula/genética , Línea Celular , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes/métodos , Factor Nuclear 1-beta del Hepatocito/genética , Humanos , Metaboloma , Ratones , Transcriptoma
11.
Neurosurg Rev ; 45(1): 167-197, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34170424

RESUMEN

Traumatic brain injury (TBI) is the main cause of pediatric trauma death and disability worldwide. Recent studies have sought to identify biomarkers of TBI for the purpose of assessing functional outcomes. The aim of this systematic review was to evaluate the utility of TBI biomarkers in the pediatric population by summarizing recent findings in the medical literature. A total of 303 articles were retrieved from our search. An initial screening to remove duplicate studies yielded 162 articles. After excluding all articles that did not meet the inclusion criteria, 56 studies were gathered. Among the 56 studies, 36 analyzed serum biomarkers; 11, neuroimaging biomarkers; and 9, cerebrospinal fluid (CSF) biomarkers. Most studies assessed biomarkers in the serum, reflecting the feasibility of obtaining blood samples compared to obtaining CSF or performing neuroimaging. S100B was the most studied serum biomarker in TBI, followed by SNE and UCH-L1, whereas in CSF analysis, there was no unanimity. Among the different neuroimaging techniques employed, diffusion tensor imaging (DTI) was the most common, seemingly holding diagnostic power in the pediatric TBI clinical setting. The number of cross-sectional studies was similar to the number of longitudinal studies. Our data suggest that S100B measurement has high sensitivity and great promise in diagnosing pediatric TBI, ideally when associated with head CT examination and clinical decision protocols. Further large-scale longitudinal studies addressing TBI biomarkers in children are required to establish more accurate diagnostic protocols and prognostic tools.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen de Difusión Tensora , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Niño , Estudios Transversales , Humanos , Pronóstico
12.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233054

RESUMEN

Bladder cancer is the 10th most common cancer in the world and has a high risk of recurrence and metastasis. In order to sustain high energetic needs, cancer cells undergo complex metabolic adaptations, such as a switch toward aerobic glycolysis, that can be exploited therapeutically. Reactive oxygen species (ROS) act as key regulators of cancer metabolic reprogramming and tumorigenesis, but the sources of ROS remain unidentified. Monoamine oxidases (MAOs) are mitochondrial enzymes that generate H2O2 during the breakdown of catecholamines and serotonin. These enzymes are particularly important in neurological disorders, but recently, a new link between MAOs and cancer has been uncovered, involving their production of ROS. At present, the putative role of MAOs in bladder cancer has never been evaluated. We observed that human urothelial tumor explants and the bladder cancer cell line AY27 expressed both MAO-A and MAO-B isoforms. Selective inhibition of MAO-A or MAO-B limited mitochondrial ROS accumulation, cell cycle progression and proliferation of bladder cancer cells, while only MAO-A inhibition prevented cell motility. To test whether ROS contributed to MAO-induced tumorigenesis, we used a mutated form of MAO-A which was unable to produce H2O2. Adenoviral transduction of the WT MAO-A stimulated the proliferation and migration of AY27 cells while the Lys305Met MAO-A mutant was inactive. This was consistent with the fact that the antioxidant Trolox strongly impaired proliferation and cell cycle progression. Most interestingly, AY27 cells were highly dependent on glucose metabolism to sustain their growth, and MAO inhibitors potently reduced glycolysis and oxidative phosphorylation, due to pyruvate depletion. Accordingly, MAO inhibitors decreased the expression of proteins involved in glucose transport (GLUT1) and transformation (HK2). In conclusion, urothelial cancer cells are characterized by a metabolic shift toward glucose-dependent metabolism, which is important for cell growth and is under the regulation of MAO-dependent oxidative stress.


Asunto(s)
Carcinoma , Neoplasias de la Vejiga Urinaria , Antioxidantes/metabolismo , Carcinogénesis/metabolismo , Carcinoma/metabolismo , Catecolaminas/metabolismo , Proliferación Celular , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Estrés Oxidativo , Piruvatos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serotonina/metabolismo , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo
13.
Gut ; 70(6): 1078-1087, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33020209

RESUMEN

OBJECTIVE: The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes. DESIGN: We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human. RESULTS: We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor γ for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic. CONCLUSIONS: Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biosíntesis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Duodeno/fisiología , Sistema Nervioso Entérico/fisiología , Prebióticos , Receptores Opioides mu/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacología , Adulto , Anciano , Animales , Eje Cerebro-Intestino , Diabetes Mellitus Experimental/fisiopatología , Duodeno/inervación , Encefalinas/genética , Encefalinas/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Microbioma Gastrointestinal , Prueba de Tolerancia a la Glucosa , Humanos , Contracción Isotónica/efectos de los fármacos , Masculino , Ratones , Persona de Mediana Edad , Músculo Liso/fisiología , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Oligosacáridos/farmacología , PPAR gamma/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Receptores Opioides mu/genética , Transducción de Señal
14.
Microb Pathog ; 153: 104800, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33609651

RESUMEN

Trypanosoma cruzi is the causative agent of Chagas disease, infecting the heart, intestines and liver tissues. There is growing evidence that oxidative stress, defined as a persistent imbalance between highly oxidative compounds and antioxidant defenses, is a marker of tissue inflammation; it is related to immune responses such as damage, as well as to strand breaks in DNA contributing to disease progression. Antioxidant agents help mitigate the damage caused by inflammation, preventing or slowing damage to cells caused by free radicals. In this sense, resveratrol (RSV) is an important polyphenol that demonstrates antioxidant effects. It reverses damage caused by several infectious diseases. The aim of the present study was to determine whether treatment with RSV would prevent or minimize oxidative damage caused by T. cruzi. The animals were divided into four groups (n = 5): A) control; B) control + RSV; C) infected and D) infected + RSV. The infected groups received 1 x 104 Y strain trypomastigotes via intraperitoneal injection; after confirmation of infection, the mice received RSV 100 mg/kg for seven days orally. On the 8th day post-infection, we collected liver tissue for analysis of oxidant/antioxidant status: superoxide dismutase (SOD), catalase (CAT), and glutathione s-transferase (GST) activities, as well as reactive oxygen species (ROS), non-protein thiols (NPSH), thiols, carbonyl protein, thiobarbituric acid reactive substance (TBARS), and finally, the nitrite/nitrate ratio (NOx) levels were determined. The administration of RSV did not exert direct effect on parasitemia. The infection produced high levels of TBARS, NOx, and ROS levels in liver tissue, suggesting cellular injury with production of free radicals in animals infected by T. cruzi. RSV positively modulated SOD and aumenting GST activities enzymes in infected animals. Protein thiols levels in infected animals were lower than those of control. Taken together, the data suggest T. cruzi causes hepatic oxidative stress, and RSV 100 mg/kg for seven days it's dosen't seem minimized these negative effects in the acute phase of disease.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Antioxidantes , Catalasa/metabolismo , Enfermedad de Chagas/tratamiento farmacológico , Hígado/metabolismo , Ratones , Estrés Oxidativo , Resveratrol , Superóxido Dismutasa/metabolismo
15.
Parasitol Res ; 119(1): 333-337, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31788770

RESUMEN

Chagas disease (CD) is a tropical zoonosis caused by the protozoan Trypanosoma cruzi. Severe autonomic dysfunction like reduced cardiac catecholamine-containing or acetylcholinesterase-positive innervation have been reported in CD. Renin-angiotensin system (RAS) seems to participate in the regulation of adrenal catecholamine secretion by adrenal medullary chromaffin cells, which might be dependent of nitric oxide (NO) pathways. To investigate the levels of RAS components in the adrenal gland during the acute infection with Y strain T. cruzi and in response to acute administration of an inhibitor of the enzyme NO synthase, L-NAME. Male Holtzman rats were inoculated intraperitoneally with Y strain T. cruzi and received L-NAME or tap water from one day before the infection until 13 or 17 days post-inoculation (dpi). The concentration of RAS molecules in the adrenal tissue was evaluated by ELISA immunoassay. Angiotensin converting enzyme 1 (ACE1) levels were significantly lower at 17 dpi when compared to 13 dpi. No significant differences were found compared with baseline, and no changes were detected in adrenal tissue levels of angiotensin converting enzyme 2 (ACE2), angiotensin II, or angiotensin-(1-7). Moreover, the treatment with L-NAME did not influence the levels of RAS components in adrenal tissue during the course of T. cruzi infection. We provided the first evidence that levels of RAS molecules change in the adrenal gland during acute phase of T. cruzi infection. Future studies are necessary to fully address the role of NO in RAS-associated adrenal gland function in CD.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Enfermedad de Chagas/metabolismo , Óxido Nítrico/metabolismo , Sistema Renina-Angiotensina/fisiología , Trypanosoma cruzi/fisiología , Animales , Modelos Animales de Enfermedad , Masculino , NG-Nitroarginina Metil Éster/administración & dosificación , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Circ Res ; 120(4): 645-657, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28096195

RESUMEN

RATIONALE: Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood. OBJECTIVE: To investigate the role of MitEpac1 (mitochondrial exchange protein directly activated by cAMP 1) in ischemia/reperfusion injury. METHODS AND RESULTS: We show that Epac1 (exchange protein directly activated by cAMP 1) genetic ablation (Epac1-/-) protects against experimental myocardial ischemia/reperfusion injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation-induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of Epac1 in its mitochondrial-targeting sequence protects against hypoxia/reoxygenation-induced cell death. Mechanistically, Epac1 favors Ca2+ exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the VDAC1 (voltage-dependent anion channel 1), the GRP75 (chaperone glucose-regulated protein 75), and the IP3R1 (inositol-1,4,5-triphosphate receptor 1), leading to mitochondrial Ca2+ overload and opening of the mitochondrial permeability transition pore. In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 via the mitochondrial recruitment of CaMKII (Ca2+/calmodulin-dependent protein kinase II), which decreases nicotinamide adenine dinucleotide phosphate hydrogen synthesis, thereby, reducing the antioxidant capabilities of the cardiomyocyte. CONCLUSIONS: Our results reveal the existence, within mitochondria, of different cAMP-Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia-induced myocardial damage.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/biosíntesis , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Muerte Celular/fisiología , Células Cultivadas , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Microdominios de Membrana/metabolismo , Microdominios de Membrana/patología , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , Ratas
17.
Biofouling ; 35(9): 997-1006, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31710252

RESUMEN

Surface pre-reacted glass-ionomer (S-PRG) is a bioactive filler produced by PRG technology, which is applied to various dental materials. The inhibitory effects of S-PRG eluate against Candida, the most common fungal oral pathogen, were investigated. Minimum inhibitory concentrations (MIC) and anti-biofilm activities were tested against Candida albicans, Candida glabrata, Candida krusei, and Candida tropicalis. For the in vivo study, Galleria mellonella was used as a model to evaluate the effects of S-PRG on toxicity, hemocyte counts and candidiasis. The MIC of S-PRG ranged from 5 to 40% (v/v). S-PRG eluate exhibited anti-biofilm activity for all the Candida species tested. Furthermore, injection of S-PRG eluate into G. mellonella was not toxic to the larvae and protected G. mellonella against experimental candidiasis. In addition, S-PRG eluate inhibited biofilm formation by C. albicans, C. glabrata, C. krusei, and C. tropicalis and exerted protective effects on G. mellonella against experimental candidiasis in vivo.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Candidiasis Bucal/prevención & control , Cementos de Ionómero Vítreo/farmacología , Mariposas Nocturnas/efectos de los fármacos , Resinas Acrílicas/farmacología , Animales , Antifúngicos/toxicidad , Biopelículas/crecimiento & desarrollo , Candida/crecimiento & desarrollo , Cementos de Ionómero Vítreo/toxicidad , Larva/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Mariposas Nocturnas/microbiología , Dióxido de Silicio/farmacología
18.
Gut ; 66(2): 258-269, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26565000

RESUMEN

OBJECTIVE: The gut-brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. DESIGN: We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. RESULTS: In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. CONCLUSIONS: Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders.


Asunto(s)
Adipoquinas/farmacología , Sistema Nervioso Entérico/efectos de los fármacos , Glucosa/metabolismo , Hipotálamo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Contracción Muscular/efectos de los fármacos , Animales , Apelina , Técnicas Biosensibles , Diabetes Mellitus/fisiopatología , Duodeno/efectos de los fármacos , Duodeno/metabolismo , Sistema Nervioso Entérico/fisiología , Motilidad Gastrointestinal/efectos de los fármacos , Homeostasis , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso/fisiología , Óxido Nítrico/metabolismo , Obesidad/fisiopatología , Telemetría
19.
Circulation ; 131(4): 390-400; discussion 400, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25369805

RESUMEN

BACKGROUND: Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and is regulated by various signaling pathways. However, the molecular mechanisms that negatively regulate these signal transduction pathways remain poorly understood. METHODS AND RESULTS: Here, we characterized Carabin, a protein expressed in cardiomyocytes that was downregulated in cardiac hypertrophy and human heart failure. Four weeks after transverse aortic constriction, Carabin-deficient (Carabin(-/-)) mice developed exaggerated cardiac hypertrophy and displayed a strong decrease in fractional shortening (14.6±1.6% versus 27.6±1.4% in wild type plus transverse aortic constriction mice; P<0.0001). Conversely, compensation of Carabin loss through a cardiotropic adeno-associated viral vector encoding Carabin prevented transverse aortic constriction-induced cardiac hypertrophy with preserved fractional shortening (39.9±1.2% versus 25.9±2.6% in control plus transverse aortic constriction mice; P<0.0001). Carabin also conferred protection against adrenergic receptor-induced hypertrophy in isolated cardiomyocytes. Mechanistically, Carabin carries out a tripartite suppressive function. Indeed, Carabin, through its calcineurin-interacting site and Ras/Rab GTPase-activating protein domain, functions as an endogenous inhibitor of calcineurin and Ras/extracellular signal-regulated kinase prohypertrophic signaling. Moreover, Carabin reduced Ca(2+)/calmodulin-dependent protein kinase II activation and prevented nuclear export of histone deacetylase 4 after adrenergic stimulation or myocardial pressure overload. Finally, we showed that Carabin Ras-GTPase-activating protein domain and calcineurin-interacting domain were both involved in the antihypertrophic action of Carabin. CONCLUSIONS: Our study identifies Carabin as a negative regulator of key prohypertrophic signaling molecules, calcineurin, Ras, and Ca(2+)/calmodulin-dependent protein kinase II and implicates Carabin in the development of cardiac hypertrophy and failure.


Asunto(s)
Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/prevención & control , Proteínas Activadoras de GTPasa/biosíntesis , Genes ras/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal/fisiología
20.
Chimia (Aarau) ; 70(4): 240-3, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27131107

RESUMEN

The excellent bifunctional catalytic activity of nickel phosphide (Ni2P) for water splitting is reported. Ni2P, an active hydrogen evolving catalyst, is shown to be highly active for oxygen evolution. Only 290 mV of overpotential is required to generate a current density of 10 mA cm(-2) in 1 M KOH. Under oxygen evolving conditions, Ni2P undergoes structural modification to form a Ni2P/NiOx core-shell assembly, the catalytic active species. Ni2P is applied on both electrodes of an alkaline electrolyser and a current density of 10 mA cm(-2) is generated at 1.63 V.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA