Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(14): 5458-63, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22434909

RESUMEN

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Asunto(s)
Basidiomycota/genética , Genómica , Lignina/metabolismo , Basidiomycota/clasificación , Hidrólisis , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Especificidad de la Especie
2.
Proc Natl Acad Sci U S A ; 109(43): 17501-6, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045686

RESUMEN

Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and ß-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.


Asunto(s)
Adaptación Fisiológica/genética , Agaricus/genética , Ecología , Genoma Fúngico , Agaricus/metabolismo , Agaricus/fisiología , Evolución Molecular , Lignina/metabolismo
3.
Proc Natl Acad Sci U S A ; 108(22): 9166-71, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21536894

RESUMEN

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


Asunto(s)
Basidiomycota/genética , Hongos/genética , Triticum/microbiología , Perfilación de la Expresión Génica , Genes Fúngicos , Genoma , Genoma Fúngico , Modelos Genéticos , Nitratos/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Análisis de Secuencia de ADN , Sulfatos/química
4.
Stand Genomic Sci ; 7(3): 469-82, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24019993

RESUMEN

Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

5.
Science ; 328(5978): 633-6, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20431018

RESUMEN

The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.


Asunto(s)
Genoma , Análisis de Secuencia de ADN , Xenopus/genética , Animales , Pollos/genética , Mapeo Cromosómico , Cromosomas/genética , Biología Computacional , Secuencia Conservada , Elementos Transponibles de ADN , ADN Complementario , Embrión no Mamífero/metabolismo , Evolución Molecular , Etiquetas de Secuencia Expresada , Duplicación de Gen , Genes , Humanos , Filogenia , Sintenía , Vertebrados/genética , Xenopus/embriología , Proteínas de Xenopus/genética
6.
Nat Biotechnol ; 26(5): 553-60, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18454138

RESUMEN

Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.


Asunto(s)
Mapeo Cromosómico/métodos , ADN de Hongos/genética , Genoma Fúngico/genética , Análisis de Secuencia de ADN/métodos , Trichoderma/genética , Secuencia de Bases , Datos de Secuencia Molecular , Trichoderma/clasificación
7.
J Bacteriol ; 189(5): 1931-45, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17158667

RESUMEN

Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C(5) to C(12)) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an approximately 4-Mb circular chromosome and an approximately 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (approximately 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.


Asunto(s)
Betaproteobacteria/genética , Genoma Bacteriano , Éteres Metílicos/metabolismo , Secuencia de Bases , Betaproteobacteria/efectos de los fármacos , Betaproteobacteria/metabolismo , Biodegradación Ambiental , Transporte Biológico , Metales/metabolismo , Metales/farmacología , Datos de Secuencia Molecular , Plásmidos , Secuencias Repetidas en Tándem , Alcohol terc-Butílico/metabolismo
8.
Science ; 317(5834): 86-94, 2007 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17615350

RESUMEN

Sea anemones are seemingly primitive animals that, along with corals, jellyfish, and hydras, constitute the oldest eumetazoan phylum, the Cnidaria. Here, we report a comparative analysis of the draft genome of an emerging cnidarian model, the starlet sea anemone Nematostella vectensis. The sea anemone genome is complex, with a gene repertoire, exon-intron structure, and large-scale gene linkage more similar to vertebrates than to flies or nematodes, implying that the genome of the eumetazoan ancestor was similarly complex. Nearly one-fifth of the inferred genes of the ancestor are eumetazoan novelties, which are enriched for animal functions like cell signaling, adhesion, and synaptic transmission. Analysis of diverse pathways suggests that these gene "inventions" along the lineage leading to animals were likely already well integrated with preexisting eukaryotic genes in the eumetazoan progenitor.


Asunto(s)
Evolución Biológica , Genoma , Anémonas de Mar/genética , Animales , Adhesión Celular , Evolución Molecular , Genes , Ligamiento Genético , Genoma Humano , Genómica , Humanos , Intrones , Redes y Vías Metabólicas , Familia de Multigenes , Músculos/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Filogenia , Anémonas de Mar/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal , Sintenía
9.
Science ; 318(5848): 245-50, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17932292

RESUMEN

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.


Asunto(s)
Proteínas Algáceas/genética , Proteínas Algáceas/fisiología , Evolución Biológica , Chlamydomonas reinhardtii/genética , Genoma , Animales , Chlamydomonas reinhardtii/fisiología , Cloroplastos/metabolismo , Biología Computacional , ADN de Algas/genética , Flagelos/metabolismo , Genes , Genómica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Datos de Secuencia Molecular , Familia de Multigenes , Fotosíntesis/genética , Filogenia , Plantas/genética , Proteoma , Análisis de Secuencia de ADN
10.
Genomics ; 80(6): 691-8, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12523365

RESUMEN

Amplification of source DNA is a nearly universal requirement for molecular biology applications. The primary methods currently available to researchers are limited to in vivo amplification in Escherichia coli hosts and the polymerase chain reaction. Rolling-circle DNA replication is a well-known method for synthesis of phage genomes and recently has been applied as rolling circle amplification (RCA) of specific target sequences as well as circular vectors used in cloning. Here, we demonstrate that RCA using random hexamer primers with 29 DNA polymerase can be used for strand-displacement amplification of different vector constructs containing a variety of insert sizes to produce consistently uniform template for end-sequencing reactions. We show this procedure to be especially effective in a high-throughput plasmid production sequencing process. In addition, we demonstrate that whole bacterial genomes can be effectively amplified from cells or small amounts of purified genomic DNA without apparent bias for use in downstream applications, including whole genome shotgun sequencing.


Asunto(s)
Genómica/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA