Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 81(4): 691-707.e6, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33382985

RESUMEN

Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available oxygen, is associated with proliferation across many organisms and conditions. To better understand that association, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex (PDH) to increase pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity impairs cell proliferation by reducing the NAD+/NADH ratio. This change in NAD+/NADH is caused by increased mitochondrial membrane potential that impairs mitochondrial electron transport and NAD+ regeneration. Uncoupling respiration from ATP synthesis or increasing ATP hydrolysis restores NAD+/NADH homeostasis and proliferation even when glucose oxidation is increased. These data suggest that when demand for NAD+ to support oxidation reactions exceeds the rate of ATP turnover in cells, NAD+ regeneration by mitochondrial respiration becomes constrained, promoting fermentation, despite available oxygen. This argues that cells engage in aerobic glycolysis when the demand for NAD+ is in excess of the demand for ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glucosa/metabolismo , Glucólisis , NAD/metabolismo , Células A549 , Adenosina Trifosfato/genética , Aerobiosis , Glucosa/genética , Células HeLa , Humanos , NAD/genética , Oxidación-Reducción
2.
Genes Dev ; 30(9): 1020-33, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27125672

RESUMEN

Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2-null mice (Pkm2(-/-)). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2(-/-) mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Metabolismo Energético/genética , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Animales , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/fisiopatología , Proliferación Celular/genética , Dieta Alta en Grasa , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Mutación de Línea Germinal , Crecimiento y Desarrollo/genética , Hepatocitos/citología , Homeostasis/genética , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/fisiopatología , Masculino , Ratones , Isoformas de Proteínas , Proteínas de Unión a Hormona Tiroide
3.
Proc Natl Acad Sci U S A ; 117(46): 28918-28921, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33168727

RESUMEN

REV1/POLζ-dependent mutagenic translesion synthesis (TLS) promotes cell survival after DNA damage but is responsible for most of the resulting mutations. A novel inhibitor of this pathway, JH-RE-06, promotes cisplatin efficacy in cancer cells and mouse xenograft models, but the mechanism underlying this combinatorial effect is not known. We report that, unexpectedly, in two different mouse xenograft models and four human and mouse cell lines we examined in vitro cisplatin/JH-RE-06 treatment does not increase apoptosis. Rather, it increases hallmarks of senescence such as senescence-associated ß-galactosidase, increased p21 expression, micronuclei formation, reduced Lamin B1, and increased expression of the immune regulators IL6 and IL8 followed by cell death. Moreover, although p-γ-H2AX foci formation was elevated and ATR expression was low in single agent cisplatin-treated cells, the opposite was true in cells treated with cisplatin/JH-RE-06. These observations suggest that targeting REV1 with JH-RE-06 profoundly affects the nature of the persistent genomic damage after cisplatin treatment and also the resulting physiological responses. These data highlight the potential of REV1/POLζ inhibitors to alter the biological response to DNA-damaging chemotherapy and enhance the efficacy of chemotherapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Nitroquinolinas/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/farmacología , ADN/biosíntesis , Daño del ADN/fisiología , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Inhibidores Enzimáticos/administración & dosificación , Humanos , Proteínas Mad2/metabolismo , Ratones , Mutagénesis , Neoplasias/enzimología , Neoplasias/patología , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
4.
Nat Chem Biol ; 12(6): 452-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27110680

RESUMEN

Serine is both a proteinogenic amino acid and the source of one-carbon units essential for de novo purine and deoxythymidine synthesis. In the canonical pathway of glucose-derived serine synthesis, Homo sapiens phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, rate-limiting step. Genetic loss of PHGDH is toxic toward PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we used a quantitative high-throughput screen to identify small-molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and we suggest that one-carbon unit wasting thus may contribute to the efficacy of PHGDH inhibitors in vitro and in vivo.


Asunto(s)
Carbono/metabolismo , Inhibidores Enzimáticos/farmacología , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Serina/biosíntesis , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Carbono/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Femenino , Glucólisis/efectos de los fármacos , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/enzimología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Estructura Molecular , Fosfoglicerato-Deshidrogenasa/metabolismo , Purinas/biosíntesis , Serina/química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Timidina/biosíntesis , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
BMC Biol ; 12: 82, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25347702

RESUMEN

Metformin has been a first-line treatment for type II diabetes mellitus for decades and is the most widely prescribed antidiabetic drug. Retrospective studies have found that metformin treatment is associated with both reduced cancer diagnoses and cancer-related deaths. Despite the prevalence of metformin use in the clinic, its molecular mechanism of action remains controversial. In a recent issue of Cancer & Metabolism, Andrzejewski et al. present evidence that metformin acts directly on mitochondria to inhibit complex I and limits the ability of cancer cells to cope with energetic stress. Here, we discuss evidence that supports the role of metformin as a cancer therapeutic.

7.
Nat Cancer ; 2(4): 414-428, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34179825

RESUMEN

Brain metastases are refractory to therapies that control systemic disease in patients with human epidermal growth factor receptor 2 (HER2+) breast cancer, and the brain microenvironment contributes to this therapy resistance. Nutrient availability can vary across tissues, therefore metabolic adaptations required for brain metastatic breast cancer growth may introduce liabilities that can be exploited for therapy. Here, we assessed how metabolism differs between breast tumors in brain versus extracranial sites and found that fatty acid synthesis is elevated in breast tumors growing in brain. We determine that this phenotype is an adaptation to decreased lipid availability in brain relative to other tissues, resulting in a site-specific dependency on fatty acid synthesis for breast tumors growing at this site. Genetic or pharmacological inhibition of fatty acid synthase (FASN) reduces HER2+ breast tumor growth in the brain, demonstrating that differences in nutrient availability across metastatic sites can result in targetable metabolic dependencies.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Ácido Graso Sintasas/genética , Ácidos Grasos/uso terapéutico , Femenino , Humanos , Microambiente Tumoral
8.
Cancer Discov ; 10(9): 1352-1373, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32571778

RESUMEN

A hallmark of metastasis is the adaptation of tumor cells to new environments. Metabolic constraints imposed by the serine and glycine-limited brain environment restrict metastatic tumor growth. How brain metastases overcome these growth-prohibitive conditions is poorly understood. Here, we demonstrate that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is a major determinant of brain metastasis in multiple human cancer types and preclinical models. Enhanced serine synthesis proved important for nucleotide production and cell proliferation in highly aggressive brain metastatic cells. In vivo, genetic suppression and pharmacologic inhibition of PHGDH attenuated brain metastasis, but not extracranial tumor growth, and improved overall survival in mice. These results reveal that extracellular amino acid availability determines serine synthesis pathway dependence, and suggest that PHGDH inhibitors may be useful in the treatment of brain metastasis. SIGNIFICANCE: Using proteomics, metabolomics, and multiple brain metastasis models, we demonstrate that the nutrient-limited environment of the brain potentiates brain metastasis susceptibility to serine synthesis inhibition. These findings underscore the importance of studying cancer metabolism in physiologically relevant contexts, and provide a rationale for using PHGDH inhibitors to treat brain metastasis.This article is highlighted in the In This Issue feature, p. 1241.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Encéfalo/patología , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Encéfalo/metabolismo , Neoplasias Encefálicas/secundario , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Resistencia a Antineoplásicos , Femenino , Técnicas de Silenciamiento del Gen , Glicina/análisis , Glicina/metabolismo , Humanos , Metabolómica , Ratones , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Proteómica , RNA-Seq , Serina/análisis , Serina/metabolismo , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Commun ; 10(1): 5604, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811141

RESUMEN

Increased glucose uptake and metabolism is a prominent phenotype of most cancers, but efforts to clinically target this metabolic alteration have been challenging. Here, we present evidence that lactoylglutathione (LGSH), a byproduct of methylglyoxal detoxification, is elevated in both human and murine non-small cell lung cancers (NSCLC). Methylglyoxal is a reactive metabolite byproduct of glycolysis that reacts non-enzymatically with nucleophiles in cells, including basic amino acids, and reduces cellular fitness. Detoxification of methylglyoxal requires reduced glutathione (GSH), which accumulates to high levels in NSCLC relative to normal lung. Ablation of the methylglyoxal detoxification enzyme glyoxalase I (Glo1) potentiates methylglyoxal sensitivity and reduces tumor growth in mice, arguing that targeting pathways involved in detoxification of reactive metabolites is an approach to exploit the consequences of increased glucose metabolism in cancer.


Asunto(s)
Glucosa/metabolismo , Glucólisis , Neoplasias Pulmonares/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Glutatión/metabolismo , Humanos , Inactivación Metabólica , Lactoilglutatión Liasa/metabolismo , Pulmón/metabolismo , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Piruvaldehído/metabolismo , Piruvaldehído/toxicidad
10.
Cancer Res ; 79(22): 5723-5733, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31484670

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer deaths in the United States. The deoxynucleoside analogue gemcitabine is among the most effective therapies to treat PDAC, however, nearly all patients treated with gemcitabine either fail to respond or rapidly develop resistance. One hallmark of PDAC is a striking accumulation of stromal tissue surrounding the tumor, and this accumulation of stroma can contribute to therapy resistance. To better understand how stroma limits response to therapy, we investigated cell-extrinsic mechanisms of resistance to gemcitabine. Conditioned media from pancreatic stellate cells (PSC), as well as from other fibroblasts, protected PDAC cells from gemcitabine toxicity. The protective effect of PSC-conditioned media was mediated by secretion of deoxycytidine, but not other deoxynucleosides, through equilibrative nucleoside transporters. Deoxycytidine inhibited the processing of gemcitabine in PDAC cells, thus reducing the effect of gemcitabine and other nucleoside analogues on cancer cells. These results suggest that reducing deoxycytidine production in PSCs may increase the efficacy of nucleoside analog therapies. SIGNIFICANCE: This study provides important new insight into mechanisms that contribute to gemcitabine resistance in PDAC and suggests new avenues for improving gemcitabine efficacy.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Células Estrelladas Pancreáticas/efectos de los fármacos , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Gemcitabina , Neoplasias Pancreáticas
11.
Nat Cell Biol ; 20(7): 782-788, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29941931

RESUMEN

Defining the metabolic limitations of tumour growth will help to develop cancer therapies1. Cancer cells proliferate slower in tumours than in standard culture conditions, indicating that a metabolic limitation may restrict cell proliferation in vivo. Aspartate synthesis can limit cancer cell proliferation when respiration is impaired2-4; however, whether acquiring aspartate is endogenously limiting for tumour growth is unknown. We confirm that aspartate has poor cell permeability, which prevents environmental acquisition, whereas the related amino acid asparagine is available to cells in tumours, but cancer cells lack asparaginase activity to convert asparagine to aspartate. Heterologous expression of guinea pig asparaginase 1 (gpASNase1), an enzyme that produces aspartate from asparagine5, confers the ability to use asparagine to supply intracellular aspartate to cancer cells in vivo. Tumours expressing gpASNase1 grow at a faster rate, indicating that aspartate acquisition is an endogenous metabolic limitation for the growth of some tumours. Tumours expressing gpASNase1 are also refractory to the growth suppressive effects of metformin, suggesting that metformin inhibits tumour growth by depleting aspartate. These findings suggest that therapeutic aspartate suppression could be effective to treat cancer.


Asunto(s)
Ácido Aspártico/metabolismo , Proliferación Celular , Metabolismo Energético , Neoplasias/metabolismo , Animales , Antineoplásicos/farmacología , Asparaginasa/genética , Asparaginasa/metabolismo , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Cobayas , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Masculino , Metabolómica/métodos , Metformina/farmacología , Ratones Desnudos , Ratones Transgénicos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Transducción de Señal , Factores de Tiempo , Carga Tumoral , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cell Metab ; 28(5): 706-720.e6, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30122555

RESUMEN

Mitochondrial function is important for aspartate biosynthesis in proliferating cells. Here, we show that mitochondrial aspartate export via the aspartate-glutamate carrier 1 (AGC1) supports cell proliferation and cellular redox homeostasis. Insufficient cytosolic aspartate delivery leads to cell death when TCA cycle carbon is reduced following glutamine withdrawal and/or glutaminase inhibition. Moreover, loss of AGC1 reduces allograft tumor growth that is further compromised by treatment with the glutaminase inhibitor CB-839. Together, these findings argue that mitochondrial aspartate export sustains cell survival in low-glutamine environments and AGC1 inhibition can synergize with glutaminase inhibition to limit tumor growth.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiportadores/metabolismo , Ácido Aspártico/metabolismo , Supervivencia Celular , Citosol/metabolismo , Glutamina/metabolismo , Animales , Línea Celular , Proliferación Celular , Ciclo del Ácido Cítrico , Femenino , Humanos , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neoplasias/metabolismo
13.
Cell Chem Biol ; 24(9): 1161-1180, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938091

RESUMEN

Metabolic reprogramming contributes to tumor development and introduces metabolic liabilities that can be exploited to treat cancer. Chemotherapies targeting metabolism have been effective cancer treatments for decades, and the success of these therapies demonstrates that a therapeutic window exists to target malignant metabolism. New insights into the differential metabolic dependencies of tumors have provided novel therapeutic strategies to exploit altered metabolism, some of which are being evaluated in preclinical models or clinical trials. Here, we review our current understanding of cancer metabolism and discuss how this might guide treatments targeting the metabolic requirements of tumor cells.


Asunto(s)
Neoplasias/metabolismo , Antimetabolitos/química , Antimetabolitos/farmacología , Antimetabolitos/uso terapéutico , Argininosuccinato Sintasa/genética , Argininosuccinato Sintasa/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Ácidos Grasos/biosíntesis , Glutamina/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ingeniería Metabólica , NAD/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología
14.
Nat Med ; 23(2): 235-241, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28024083

RESUMEN

Mammalian tissues rely on a variety of nutrients to support their physiological functions. It is known that altered metabolism is involved in the pathogenesis of cancer, but which nutrients support the inappropriate growth of intact malignant tumors is incompletely understood. Amino acids are essential nutrients for many cancer cells that can be obtained through the scavenging and catabolism of extracellular protein via macropinocytosis. In particular, macropinocytosis can be a nutrient source for pancreatic cancer cells, but it is not fully understood how the tumor environment influences metabolic phenotypes and whether macropinocytosis supports the maintenance of amino acid levels within pancreatic tumors. Here we utilize miniaturized plasma exchange to deliver labeled albumin to tissues in live mice, and we demonstrate that breakdown of albumin contributes to the supply of free amino acids in pancreatic tumors. We also deliver albumin directly into tumors using an implantable microdevice, which was adapted and modified from ref. 9. Following implantation, we directly observe protein catabolism and macropinocytosis in situ by pancreatic cancer cells, but not by adjacent, non-cancerous pancreatic tissue. In addition, we find that intratumoral inhibition of macropinocytosis decreases amino acid levels. Taken together, these data suggest that pancreatic cancer cells consume extracellular protein, including albumin, and that this consumption serves as an important source of amino acids for pancreatic cancer cells in vivo.


Asunto(s)
Aminoácidos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Pinocitosis , Proteolisis , Albúmina Sérica/metabolismo , Albúminas/metabolismo , Animales , Línea Celular Tumoral , Cromatografía de Gases , Modelos Animales de Enfermedad , Espacio Extracelular/metabolismo , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Isótopos de Nitrógeno , Plasmaféresis , Proteínas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Cell Metab ; 24(5): 716-727, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27746050

RESUMEN

Metformin use is associated with reduced cancer mortality, but how metformin impacts cancer outcomes is controversial. Although metformin can act on cells autonomously to inhibit tumor growth, the doses of metformin that inhibit proliferation in tissue culture are much higher than what has been described in vivo. Here, we show that the environment drastically alters sensitivity to metformin and other complex I inhibitors. We find that complex I supports proliferation by regenerating nicotinamide adenine dinucleotide (NAD)+, and metformin's anti-proliferative effect is due to loss of NAD+/NADH homeostasis and inhibition of aspartate biosynthesis. However, complex I is only one of many inputs that determines the cellular NAD+/NADH ratio, and dependency on complex I is dictated by the activity of other pathways that affect NAD+ regeneration and aspartate levels. This suggests that cancer drug sensitivity and resistance are not intrinsic properties of cancer cells, and demonstrates that the environment can dictate sensitivity to therapies that impact cell metabolism.


Asunto(s)
Ácido Aspártico/biosíntesis , Complejo I de Transporte de Electrón/metabolismo , Metformina/farmacología , Mitocondrias/metabolismo , NAD/metabolismo , Neoplasias/patología , Microambiente Tumoral/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Ácido Pirúvico/farmacología
16.
Cell Metab ; 23(3): 517-28, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26853747

RESUMEN

Cultured cells convert glucose to lactate, and glutamine is the major source of tricarboxylic acid (TCA)-cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral , Animales , Glucemia , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Glucosa/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Desnudos , Mitocondrias/metabolismo , Mutación Missense , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas p21(ras)/genética , Ácido Pirúvico/metabolismo
18.
J Orthop Res ; 30(1): 103-11, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21710605

RESUMEN

Injuries to the inner regions of the knee meniscus do not heal and can result in degenerative changes to the articular surface, ultimately leading to osteoarthritis. A possible stimulus to enhance meniscus healing is to use electric fields that induce galvanotaxis. In this study, a novel characterization of the effects of direct current electric fields on migration characteristics of meniscus cells was performed. Primary and passaged inner and outer meniscus cells were exposed to varying electric field strengths from 0 to 6 V/cm. Cell migration was tracked using time lapse digital photography, and cell displacement and cathodal direct velocity were quantified. Cytoskeletal staining was performed to examine actin distribution and nuclear content. Cell adhesion strength was quantified as a function of wall shear stress. Meniscus cells exhibited cathodal migration and cell elongation perpendicular to the applied electric field accompanied by actin reorganization. Outer meniscus cells migrated quicker and exhibited lower adhesion strengths when compared to inner meniscus cells. Passaged cells exhibited higher migration characteristics when compared to primary cells. Overall, this study demonstrated that electric fields can significantly enhance and direct meniscus cell migration and suggests the potential for their incorporation in strategies of meniscus repair and tissue engineering.


Asunto(s)
Movimiento Celular/efectos de la radiación , Estimulación Eléctrica/métodos , Meniscos Tibiales/citología , Meniscos Tibiales/efectos de la radiación , Cicatrización de Heridas/efectos de la radiación , Animales , Bovinos , Adhesión Celular/fisiología , Adhesión Celular/efectos de la radiación , Movimiento Celular/fisiología , Relación Dosis-Respuesta en la Radiación , Terapia por Estimulación Eléctrica/métodos , Campos Electromagnéticos , Meniscos Tibiales/fisiología , Osteoartritis/fisiopatología , Osteoartritis/radioterapia , Ingeniería de Tejidos/métodos , Cicatrización de Heridas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA