Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microbiology (Reading) ; 170(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847798

RESUMEN

Bacillus subtilis is a Gram-positive bacterium that is frequently used in the bioindustry for the production of various proteins, because of its superior protein secretion capacities. To determine optimal conditions for protein secretion by B. subtilis, a quick and sensitive method for measuring protein secretion is crucial. A fast and universal assay is most useful for detecting diverse proteins in a high-throughput manner. In this study, we introduce a split-luciferase-based method for measuring protein secretion by B. subtilis. The NanoBiT system was used to monitor secretion of four different proteins: xylanase A, amylase M, protein glutaminase A, and GFP nanobody. Our findings underscore the split-luciferase system as a quick, sensitive, and user-friendly method.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Luciferasas/metabolismo , Luciferasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Transporte de Proteínas , Amilasas/metabolismo , Glutaminasa/metabolismo
2.
PLoS Biol ; 18(9): e3000874, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32997663

RESUMEN

Small membrane proteins represent a largely unexplored yet abundant class of proteins in pro- and eukaryotes. They essentially consist of a single transmembrane domain and are associated with stress response mechanisms in bacteria. How these proteins are inserted into the bacterial membrane is unknown. Our study revealed that in Escherichia coli, the 27-amino-acid-long model protein YohP is recognized by the signal recognition particle (SRP), as indicated by in vivo and in vitro site-directed cross-linking. Cross-links to SRP were also observed for a second small membrane protein, the 33-amino-acid-long YkgR. However, in contrast to the canonical cotranslational recognition by SRP, SRP was found to bind to YohP posttranslationally. In vitro protein transport assays in the presence of a SecY inhibitor and proteoliposome studies demonstrated that SRP and its receptor FtsY are essential for the posttranslational membrane insertion of YohP by either the SecYEG translocon or by the YidC insertase. Furthermore, our data showed that the yohP mRNA localized preferentially and translation-independently to the bacterial membrane in vivo. In summary, our data revealed that YohP engages an unique SRP-dependent posttranslational insertion pathway that is likely preceded by an mRNA targeting step. This further highlights the enormous plasticity of bacterial protein transport machineries.


Asunto(s)
Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Partícula de Reconocimiento de Señal/metabolismo , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Unión Proteica , Biosíntesis de Proteínas , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canales de Translocación SEC/metabolismo
3.
J Am Chem Soc ; 144(33): 15303-15313, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35945166

RESUMEN

The use of antibiotics is threatened by the emergence and spread of multidrug-resistant strains of bacteria. Thus, there is a need to develop antibiotics that address new targets. In this respect, the bacterial divisome, a multi-protein complex central to cell division, represents a potentially attractive target. Of particular interest is the FtsQB subcomplex that plays a decisive role in divisome assembly and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of a macrocyclic covalent inhibitor derived from a periplasmic region of FtsB that mediates its binding to FtsQ. The bioactive conformation of this motif was stabilized by a customized cross-link resulting in a tertiary structure mimetic with increased affinity for FtsQ. To increase activity, a covalent handle was incorporated, providing an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer membrane-permeable E. coli strain, concurrent with the expected loss of FtsB localization, and also affected the infection of zebrafish larvae by a clinical E. coli strain. This first-in-class inhibitor of a divisome protein-protein interaction highlights the potential of proteomimetic molecules as inhibitors of challenging targets. In particular, the covalent mode-of-action can serve as an inspiration for future antibiotics that target protein-protein interactions.


Asunto(s)
Proteínas de Escherichia coli , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Pez Cebra/metabolismo
4.
Mol Microbiol ; 115(1): 28-40, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32798330

RESUMEN

Eeyarestatin 1 (ES1) is an inhibitor of endoplasmic reticulum (ER) associated protein degradation, Sec61-dependent Ca2+ homeostasis and protein translocation into the ER. Recently, evidence was presented showing that a smaller analog of ES1, ES24, targets the Sec61-translocon, and captures it in an open conformation that is translocation-incompetent. We now show that ES24 impairs protein secretion and membrane protein insertion in Escherichia coli via the homologous SecYEG-translocon. Transcriptomic analysis suggested that ES24 has a complex mode of action, probably involving multiple targets. Interestingly, ES24 shows antibacterial activity toward clinically relevant strains. Furthermore, the antibacterial activity of ES24 is equivalent to or better than that of nitrofurantoin, a known antibiotic that, although structurally similar to ES24, does not interfere with SecYEG-dependent protein trafficking. Like nitrofurantoin, we find that ES24 requires activation by the NfsA and NfsB nitroreductases, suggesting that the formation of highly reactive nitroso intermediates is essential for target inactivation in vivo.


Asunto(s)
Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Canales de Translocación SEC/metabolismo , Antibacterianos/metabolismo , Retículo Endoplásmico/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrazonas/química , Hidroxiurea/química , Hidroxiurea/farmacología , Proteínas de la Membrana/metabolismo , Nitrorreductasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC/efectos de los fármacos
5.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35806397

RESUMEN

A licensed Chlamydia trachomatis (Ct) vaccine is not yet available. Recombinant Chlamydia trachomatis major outer membrane protein (Ct-MOMP), the most abundant constituent of the chlamydial outer membrane complex, is considered the most attractive candidate for subunit-based vaccine formulations. Unfortunately, Ct-MOMP is difficult to express in its native structure in the E. coli outer membrane (OM). Here, by co-expression of the Bam complex, we improved the expression and localization of recombinant Ct-MOMP in the E. coli OM. Under these conditions, recombinant Ct-MOMP appeared to assemble into a ß-barrel conformation and express domains at the cell surface indicative of correct folding. The data indicate that limited availability of the Bam complex can be a bottleneck for the production of heterologous OM vaccine antigens, information that is also relevant for strategies aimed at producing recombinant OMV-based vaccines.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Anticuerpos Antibacterianos , Proteínas de la Membrana Bacteriana Externa/química , Vacunas Bacterianas , Escherichia coli/metabolismo , Vacunas de Subunidad , Vacunas Sintéticas
6.
Microb Cell Fact ; 20(1): 176, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488755

RESUMEN

Monomeric autotransporters have been used extensively to transport recombinant proteins or protein domains to the cell surface of Gram-negative bacteria amongst others for antigen display. Genetic fusion of such antigens into autotransporters has yielded chimeras that can be used for vaccination purposes. However, not every fusion construct is transported efficiently across the cell envelope. Problems occur in particular when the fused antigen attains a relatively complex structure in the periplasm, prior to its translocation across the outer membrane. The latter step requires the interaction with periplasmic chaperones and the BAM (ß-barrel assembly machinery) complex in the outer membrane. This complex catalyzes insertion and folding of ß-barrel outer membrane proteins, including the ß-barrel domain of autotransporters. Here, we investigated whether the availability of periplasmic chaperones or the BAM complex is a limiting factor for the surface localization of difficult-to-secrete chimeric autotransporter constructs. Indeed, we found that overproduction of in particular the BAM complex, increases surface display of difficult-to-secrete chimeras. Importantly, this beneficial effect appeared to be generic not only for a number of monomeric autotransporter fusions but also for fusions to trimeric autotransporters. Therefore, overproduction of BAM might be an attractive strategy to improve the production of recombinant autotransporter constructs.


Asunto(s)
Membrana Celular/metabolismo , Escherichia coli/metabolismo , Sistemas de Translocación de Proteínas/metabolismo , Proteínas Recombinantes/biosíntesis , Escherichia coli/genética , Transporte de Proteínas
7.
Nat Rev Mol Cell Biol ; 10(4): 255-64, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19305415

RESUMEN

Correct protein function depends on delivery to the appropriate cellular or subcellular compartment. Following the initiation of protein synthesis in the cytosol, many bacterial and eukaryotic proteins must be integrated into or transported across a membrane to reach their site of function. Whereas in the post-translational delivery pathway ATP-dependent factors bind to completed polypeptides and chaperone them until membrane translocation is initiated, a GTP-dependent co-translational pathway operates to couple ongoing protein synthesis to membrane transport. These distinct pathways provide different solutions for the maintenance of proteins in a state that is competent for membrane translocation and their delivery for export from the cytosol.


Asunto(s)
Citosol/metabolismo , Células Procariotas/metabolismo , Transporte de Proteínas , Animales , Células Eucariotas/metabolismo , Biosíntesis de Proteínas , Partícula de Reconocimiento de Señal/metabolismo
8.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34829983

RESUMEN

The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane ß-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/ultraestructura , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/ultraestructura , División Celular/genética , Proteínas del Citoesqueleto/ultraestructura , Escherichia coli/química , Escherichia coli/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/ultraestructura , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/ultraestructura , Lipoproteínas/genética , Lipoproteínas/ultraestructura , Proteínas de Transporte de Membrana/ultraestructura , Pliegue de Proteína , Multimerización de Proteína/genética
9.
Mol Microbiol ; 112(1): 81-98, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30983025

RESUMEN

Disarming pathogens by targeting virulence factors is a promising alternative to classic antibiotics. Many virulence factors in Gram-negative bacteria are secreted via the autotransporter (AT) pathway, also known as Type 5 secretion. These factors are secreted with the assistance of two membrane-based protein complexes: Sec and Bam. To identify inhibitors of the AT pathway, we used transcriptomics analysis to develop a fluorescence-based high-throughput assay that reports on the stress induced by the model AT hemoglobin protease (Hbp) when its secretion across the outer membrane is inhibited. Screening a library of 1600 fragments yielded the compound VUF15259 that provokes cell envelope stress and secretion inhibition of the ATs Hbp and Antigen-43. VUF15259 also impairs ß-barrel folding activity of various outer membrane proteins. Furthermore, we found that mutants that are compromised in outer membrane protein biogenesis are more susceptible to VUF15259. Finally, VUF15259 induces the release of vesicles that appear to assemble in short chains. Taken together, VUF15259 is the first reported compound that inhibits AT secretion and our data are mostly consistent with VUF15259 interfering with the Bam-complex as potential mode of action. The validation of the presented assay incites its use to screen larger compound libraries with drug-like compounds.


Asunto(s)
Sistemas de Secreción Tipo V/antagonistas & inhibidores , Sistemas de Secreción Tipo V/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endopeptidasas/metabolismo , Bacterias Gramnegativas , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/metabolismo , Factores de Virulencia/metabolismo
10.
Int J Mol Sci ; 20(15)2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357624

RESUMEN

The divisome is a large protein complex that regulates bacterial cell division and therefore represents an attractive target for novel antibacterial drugs. In this study, we report on the ligandability of FtsQ, which is considered a key component of the divisome. For this, the soluble periplasmic domain of Escherichia coli FtsQ was immobilized and used to screen a library of 1501 low molecular weight (< 300 Da), synthetic compounds for those that interact with the protein. A primary screen was performed using target immobilized NMR screening (TINS) and yielded 72 hits. Subsequently, these hits were validated in an orthogonal assay. At first, we aimed to do this using surface plasmon resonance (SPR), but the lack of positive control hampered optimization of the experiment. Alternatively, a two-dimensional heteronuclear single quantum coherence (HSQC) NMR spectrum of FtsQ was obtained and used to validate these hits by chemical shift perturbation (CSP) experiments. This resulted in the identification of three fragments with weak affinity for the periplasmic domain of FtsQ, arguing that the ligandability of FtsQ is low. While this indicates that developing high affinity ligands for FtsQ is far from straightforward, the identified hit fragments can help to further interrogate FtsQ interactions.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular , División Celular , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Relación Estructura-Actividad
11.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29439988

RESUMEN

The Escherichia coli virulence factor hemoglobin protease (Hbp) has been engineered into a surface display system that can be expressed to high density on live E. coli and Salmonella enterica serovar Typhimurium cells or derived outer membrane vesicles (OMVs). Multiple antigenic sequences can be genetically fused into the Hbp core structure for optimal exposure to the immune system. Although the Hbp display platform is relatively tolerant, increasing the number, size, and complexity of integrated sequences generally lowers the expression of the fused constructs and limits the density of display. This is due to the intricate mechanism of Hbp secretion across the outer membrane and the efficient quality control of translocation-incompetent chimeric Hbp molecules in the periplasm. To address this shortcoming, we explored the coupling of purified proteins to the Hbp carrier after its translocation across the outer membrane using the recently developed SpyTag/SpyCatcher protein ligation system. As expected, fusion of the small SpyTag to Hbp did not hamper display on OMVs. Subsequent addition of purified proteins fused to the SpyCatcher domain resulted in efficient covalent coupling to Hbp-SpyTag. Using in addition the orthogonal SnoopTag/SnoopCatcher system, multiple antigen modules could be coupled to Hbp in a sequential ligation strategy. Not only antigens proved suitable for Spy-mediated ligation but also nanobodies. Addition of this functionality to the platform might allow the targeting of live bacterial or OMV vaccines to certain tissues or immune cells to tailor immune responses.IMPORTANCE Outer membrane vesicles (OMVs) derived from Gram-negative bacteria attract increasing interest in the development of vaccines and therapeutic agents. We aim to construct a semisynthetic OMV platform for recombinant antigen presentation on OMVs derived from attenuated Salmonella enterica serovar Typhimurium cells displaying an adapted Escherichia coli autotransporter, Hbp, at the surface. Although this autotransporter accepts substantial modifications, its capacity with respect to the number, size, and structural complexity of the antigens genetically fused to the Hbp carrier is restricted. Here we describe the application of SpyCatcher/SpyTag protein ligation technology to enzymatically link antigens to Hbp present at high density in OMVs. Protein ligation was apparently unobstructed by the membrane environment and allowed a high surface density of coupled antigens, a property we have shown to be important for vaccine efficacy. The OMV coupling procedure appears versatile and robust, allowing fast production of experimental vaccines and therapeutic agents through a modular plug-and-display procedure.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biotecnología/métodos , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Salmonella typhimurium/metabolismo , Proteínas Recombinantes/metabolismo
12.
Infect Immun ; 85(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28717032

RESUMEN

Serotype-specific protection against Streptococcus pneumoniae is an important limitation of the current polysaccharide-based vaccines. To prevent serotype replacement, reduce transmission, and limit the emergence of new variants, it is essential to induce broad protection and restrict pneumococcal colonization. In this study, we used a prototype vaccine formulation consisting of lipopolysaccharide (LPS)-detoxified outer membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the variable N terminus of PspA (α1α2) for intranasal vaccination, which induced strong Th17 immunity associated with a substantial reduction of pneumococcal colonization. Despite the variable nature of this protein, a common major histocompatibility complex class (MHC-II) epitope was identified, based on in silico prediction combined with ex vivo screening, and was essential for interleukin-17 A (IL-17A)-mediated cross-reactivity and associated with cross protection. Based on 1,352 PspA sequences derived from a pneumococcal carriage cohort, this OMV-based vaccine formulation containing a single α1α2 type was estimated to cover 19.1% of strains, illustrating the potential of Th17-mediated cross protection.


Asunto(s)
Protección Cruzada , Interleucina-17/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Salmonella typhimurium/química , Streptococcus pneumoniae/inmunología , Células Th17/inmunología , Administración Intranasal , Animales , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/aislamiento & purificación , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Simulación por Computador , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Epítopos/aislamiento & purificación , Genes MHC Clase II , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/inmunología , Interleucina-17/biosíntesis , Lipopolisacáridos/inmunología , Ratones , Infecciones Neumocócicas/inmunología , Vacunas Neumococicas/química , Salmonella typhimurium/inmunología , Vesículas Secretoras/química , Vesículas Secretoras/inmunología , Vacunación
13.
Microb Cell Fact ; 16(1): 50, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28320377

RESUMEN

BACKGROUND: Heterologous protein production in Escherichia coli often suffers from bottlenecks such as proteolytic degradation, complex purification procedures and toxicity towards the expression host. Production of proteins in an insoluble form in inclusion bodies (IBs) can alleviate these problems. Unfortunately, the propensity of heterologous proteins to form IBs is variable and difficult to predict. Hence, fusing the target protein to an aggregation prone polypeptide or IB-tag is a useful strategy to produce difficult-to-express proteins in an insoluble form. RESULTS: When screening for signal sequences that mediate optimal targeting of heterologous proteins to the periplasmic space of E. coli, we observed that fusion to the 39 amino acid signal sequence of E. coli TorA (ssTorA) did not promote targeting but rather directed high-level expression of the human proteins hEGF, Pla2 and IL-3 in IBs. Further analysis revealed that ssTorA even mediated IB formation of the highly soluble endogenous E. coli proteins TrxA and MBP. The ssTorA also induced aggregation when fused to the C-terminus of target proteins and appeared functional as IB-tag in E. coli K-12 as well as B strains. An additive effect on IB-formation was observed upon fusion of multiple ssTorA sequences in tandem, provoking almost complete aggregation of TrxA and MBP. The ssTorA-moiety was successfully used to produce the intrinsically unstable hEGF and the toxic fusion partner SymE, demonstrating its applicability as an IB-tag for difficult-to-express and toxic proteins. CONCLUSIONS: We present proof-of-concept for the use of ssTorA as a small, versatile tag for robust E. coli-based expression of heterologous proteins in IBs.


Asunto(s)
Escherichia coli/genética , Cuerpos de Inclusión/metabolismo , Interleucina-3/biosíntesis , Señales de Clasificación de Proteína/genética , Proteínas Portadoras , Factor de Crecimiento Epidérmico/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vectores Genéticos , Humanos , Cuerpos de Inclusión/química , Interleucina-3/genética , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Solubilidad , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
14.
J Biol Chem ; 290(35): 21498-509, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26160297

RESUMEN

Cell division in Escherichia coli involves a set of essential proteins that assembles at midcell to form the so-called divisome. The divisome regulates the invagination of the inner membrane, cell wall synthesis, and inward growth of the outer membrane. One of the divisome proteins, FtsQ, plays a central but enigmatic role in cell division. This protein associates with FtsB and FtsL, which, like FtsQ, are bitopic inner membrane proteins with a large periplasmic domain (denoted FtsQp, FtsBp, and FtsLp) that is indispensable for the function of each protein. Considering the vital nature and accessible location of the FtsQBL complex, it is an attractive target for protein-protein interaction inhibitors intended to block bacterial cell division. In this study, we expressed FtsQp, FtsBp, and FtsLp individually and in combination. Upon co-expression, FtsQp was co-purified with FtsBp and FtsLp from E. coli extracts as a stable trimeric complex. FtsBp was also shown to interact with FtsQp in the absence of FtsLp albeit with lower affinity. Interactions were mapped at the C terminus of the respective domains by site-specific cross-linking. The binding affinity and 1:1:1 stoichiometry of the FtsQpBpLp complex and the FtsQpBp subcomplex were determined in complementary surface plasmon resonance, analytical ultracentrifugation, and native mass spectrometry experiments.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Complejos Multiproteicos/metabolismo , Secuencia de Aminoácidos , Técnicas Biosensibles , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , División Celular , Reactivos de Enlaces Cruzados/metabolismo , Proteínas Inmovilizadas/metabolismo , Luz , Espectrometría de Masas , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Péptidos/química , Péptidos/metabolismo , Periplasma/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Solubilidad , Relación Estructura-Actividad , Ultracentrifugación
15.
Mol Microbiol ; 95(1): 1-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25345653

RESUMEN

Autotransporter (AT) proteins provide a diverse array of important virulence functions to Gram-negative bacterial pathogens, and have also been adapted for protein surface display applications. The 'autotransporter' moniker refers to early models that depicted these proteins facilitating their own translocation across the bacterial outer membrane. Although translocation is less autonomous than originally proposed, AT protein segments upstream of the C-terminal transmembrane ß-barrel have nevertheless consistently been found to contribute to efficient translocation and/or folding of the N-terminal virulence region (the 'passenger'). However, defining the precise secretion functions of these AT regions has been complicated by the use of multiple overlapping and ambiguous terms to define AT sequence, structural, and functional features, including 'autochaperone', 'linker' and 'junction'. Moreover, the precise definitions and boundaries of these features vary among ATs and even among research groups, leading to an overall murky picture of the contributions of specific features to translocation. Here we propose a unified, unambiguous nomenclature for AT structural, functional and conserved sequence features, based on explicit criteria. Applied to 16 well-studied AT proteins, this nomenclature reveals new commonalities for translocation but also highlights that the autochaperone function is less closely associated with a conserved sequence element than previously believed.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Bacterias Gramnegativas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte Biológico , Secuencia Conservada , Bacterias Gramnegativas/química , Chaperonas Moleculares/metabolismo , Factores de Virulencia
16.
J Biol Chem ; 289(10): 7190-7199, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24443566

RESUMEN

SecA is an ATP-dependent molecular motor pumping secretory and outer membrane proteins across the cytoplasmic membrane in bacteria. SecA associates with the protein-conducting channel, the heterotrimeric SecYEG complex, in a so-called posttranslational manner. A recent study further showed binding of a monomeric state of SecA to the ribosome. However, the true oligomeric state of SecA remains controversial because SecA can also form functional dimers, and high-resolution crystal structures exist for both the monomer and the dimer. Here we present the cryo-electron microscopy structures of Escherichia coli SecA bound to the ribosome. We show that not only a monomeric SecA binds to the ribosome but also that two copies of SecA can be observed that form an elongated dimer. Two copies of SecA completely surround the tunnel exit, providing a unique environment to the nascent polypeptides emerging from the ribosome. We identified the N-terminal helix of SecA required for a stable association with the ribosome. The structures indicate a possible function of the dimeric form of SecA at the ribosome.


Asunto(s)
Adenosina Trifosfatasas/ultraestructura , Proteínas Bacterianas/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Proteínas de Transporte de Membrana/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Simulación por Computador , Microscopía por Crioelectrón , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Subunidades Ribosómicas Grandes Bacterianas/química , Canales de Translocación SEC , Proteína SecA
17.
Biochim Biophys Acta ; 1843(8): 1592-611, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24269841

RESUMEN

The two membranes of Gram-negative bacteria contain protein machines that have a general function in their assembly. To interact with the extra-cellular milieu, Gram-negatives target proteins to their cell surface and beyond. Many specialized secretion systems have evolved with dedicated translocation machines that either span the entire cell envelope or localize to the outer membrane. The latter act in concert with inner-membrane transport systems (i.e. Sec or Tat). Secretion via the Type V secretion system follows a two-step mechanism that appears relatively simple. Proteins secreted via this pathway are important for the Gram-negative life-style, either as virulence factors for pathogens or by contributing to the survival of non-invasive environmental species. Furthermore, this system appears well suited for the secretion of biotechnologically relevant proteins. In this review we focus on the biogenesis and application of two Type V subtypes, the autotransporters and two-partner secretion (TPS) systems. For translocation across the outer membrane the autotransporters require the assistance of the Bam complex that also plays a generic role in the assembly of outer membrane proteins. The TPS systems do use a dedicated translocator, but this protein shows resemblance to BamA, the major component of the Bam complex. Interestingly, both the mechanistic and more applied studies on these systems have provided a better understanding of the secretion mechanism and the biogenesis of outer membrane proteins. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos/genética , Transporte de Proteínas/genética , Proteínas de la Membrana Bacteriana Externa/química , Biotecnología , Bacterias Gramnegativas/química , Bacterias Gramnegativas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína
18.
Environ Microbiol ; 17(9): 3263-77, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25581349

RESUMEN

Cell-surface signalling (CSS) enables Gram-negative bacteria to transduce an environmental signal into a cytosolic response. This regulatory cascade involves an outer membrane receptor that transmits the signal to an anti-sigma factor in the cytoplasmic membrane, allowing the activation of an extracytoplasmic function (ECF) sigma factor. Recent studies have demonstrated that RseP-mediated proteolysis of the anti-sigma factors is key to σ(ECF) activation. Using the Pseudomonas aeruginosa FoxR anti-sigma factor, we show here that RseP is responsible for the generation of an N-terminal tail that likely contains pro-sigma activity. Furthermore, it has been reported previously that this anti-sigma factor is processed in two separate domains prior to signal recognition. Here, we demonstrate that this process is common in these types of proteins and that the processing event is probably due to autoproteolytic activity. The resulting domains interact and function together to transduce the CSS signal. However, our results also indicate that this processing event is not essential for activity. In fact, we have identified functional CSS anti-sigma factors that are not cleaved prior to signal perception. Together, our results indicate that CSS regulation can occur through both complete and initially processed anti-sigma factors.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Interacción Gen-Ambiente , Pseudomonas aeruginosa/metabolismo , Receptores de Superficie Celular/metabolismo , Factor sigma/metabolismo , Secuencia de Aminoácidos , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteolisis , Pseudomonas aeruginosa/genética , Transducción de Señal/genética
19.
Appl Environ Microbiol ; 81(2): 726-35, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25398861

RESUMEN

Bacterial ghosts are empty cell envelopes of Gram-negative bacteria that can be used as vehicles for antigen delivery. Ghosts are generated by releasing the bacterial cytoplasmic contents through a channel in the cell envelope that is created by the controlled production of the bacteriophage ϕX174 lysis protein E. While ghosts possess all the immunostimulatory surface properties of the original host strain, they do not pose any of the infectious threats associated with live vaccines. Recently, we have engineered the Escherichia coli autotransporter hemoglobin protease (Hbp) into a platform for the efficient surface display of heterologous proteins in Gram-negative bacteria, HbpD. Using the Mycobacterium tuberculosis vaccine target ESAT6 (early secreted antigenic target of 6 kDa), we have explored the application of HbpD to decorate E. coli and Salmonella ghosts with antigens. The use of different promoter systems enabled the concerted production of HbpD-ESAT6 and lysis protein E. Ghost formation was monitored by determining lysis efficiency based on CFU, the localization of a set of cellular markers, fluorescence microscopy, flow cytometry, and electron microscopy. Hbp-mediated surface display of ESAT6 was monitored using a combination of a protease accessibility assay, fluorescence microscopy, flow cytometry and (immuno-)electron microscopy. Here, we show that the concerted production of HbpD and lysis protein E in E. coli and Salmonella can be used to produce ghosts that efficiently display antigens on their surface. This system holds promise for the development of safe and cost-effective vaccines with optimal intrinsic adjuvant activity and exposure of heterologous antigens to the immune system.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Técnicas de Visualización de Superficie Celular , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Salmonella/metabolismo , Vacunas Bacterianas/aislamiento & purificación , Escherichia coli/genética , Salmonella/genética , Vacunas de Productos Inactivados/aislamiento & purificación , Proteínas Virales/metabolismo
20.
Cell Microbiol ; 16(2): 280-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24119166

RESUMEN

The pathogenicity of mycobacteria is closely associated with their ability to export virulence factors. For this purpose, mycobacteria possess different protein secretion systems, including the accessory Sec translocation pathway, SecA2. Although this pathway is associated with intracellular survival and virulence, the SecA2-dependent effector proteins remain largely undefined. In this work, we studied a Mycobacterium marinum secA2 mutant with an impaired capacity to initiate granuloma formation in zebrafish embryos. By comparing the proteomic profile of cell envelope fractions from the secA2 mutant with wild type M. marinum, we identified putative SecA2-dependent substrates. Immunoblotting procedures confirmed SecA2-dependent membrane localization for several of these proteins, including the virulence factor protein kinase G (PknG). Interestingly, phenotypical defects of the secA2 mutant are similar to those described for ΔpknG, including phagosomal maturation. Overexpression of PknG in the secA2 mutant restored its localization to the cell envelope. Importantly, PknG-overexpression also partially restored the virulence of the secA2 mutant, as indicated by enhanced infectivity in zebrafish embryos and restored inhibition of phagosomal maturation. These results suggest that SecA2-dependent membrane localization of PknG is an important determinant for M. marinum virulence.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mycobacterium marinum/metabolismo , Factores de Virulencia/metabolismo , Animales , Elementos Transponibles de ADN , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Immunoblotting , Mutagénesis Insercional , Infecciones por Mycobacterium/microbiología , Mycobacterium marinum/patogenicidad , Especificidad por Sustrato , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA