RESUMEN
Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-ß such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients.
Asunto(s)
Apoptosis/efectos de los fármacos , Bleomicina/farmacología , Daño del ADN/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas/uso terapéutico , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Colágeno/efectos de los fármacos , Colágeno/metabolismo , Humanos , Pulmón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Péptidos/farmacologíaRESUMEN
In this work oleuropein and lentisk oil have been co-loaded in different phospholipid vesicles (i.e., liposomes, transfersomes, hyalurosomes and hyalutransfersomes), to obtain a formulation capable of both inhibiting the production of different markers connected with inflammation and oxidative stress and promoting the skin repair. Liposomes were prepared using a mixture of phospholipids, oleuropein and lentisk oil. Tween 80, sodium hyaluronate or their combination have been added to the mixture to obtain transfersomes, hyalurosomes and hyalutransfersomes. Size, polydispersity index, surface charge and stability on storage was evaluated. The biocompatibility, anti-inflammatory activity and wound healing effect were tested using normal human dermal fibroblasts. Vesicles were small (mean diameter â¼ 130 nm) and homogeneously dispersed (polydispersity index â¼ 0.14), highly negatively charged (zeta potential 02053-64 mV) and capable of loading 20 mg/mL of oleuropein and 75 mg/mL of lentisk oil. The freeze-drying of dispersions with a cryoprotectant permitted to improve their stability on storage. The co-loading of oleuropein and lentisk oil in vesicles inhibited the overproduction of inflammatory markers, especially MMP-1 and IL-6, counteracted the oxidative stress induced in cells using hydrogen peroxide, and promoted the healing of a wounded area performed in vitro in a cell monolayer of fibroblasts. The proposed co-loading of oleuropein and lentisk oil in natural-based phospholipid vesicles may hold promising therapeutic value especially for the treatment of a wide variety of skin disorders.
Asunto(s)
Liposomas , Fosfolípidos , Humanos , Fosfolípidos/metabolismo , Liposomas/metabolismo , Piel/metabolismo , Estrés Oxidativo , Cicatrización de Heridas , Citocinas/metabolismoRESUMEN
The aim was to evaluate relevant biophysic processes related to the physicochemical features and gene transfection mechanism when sphingolipids are incorporated into a cationic niosome formulation for non-viral gene delivery to central nervous system. For that, two formulations named niosphingosomes and niosomes devoid of sphingolipid extracts, as control, were developed by the oil-in water emulsion technique. Both formulations and the corresponding complexes, obtained upon the addition of the reporter EGFP plasmid, were physicochemically and biologically characterized and evaluated. Compared to niosomes, niosphingosomes, and the corresponding complexes decreased particle size and increased superficial charge. Although there were not significant differences in the cellular uptake, cell viability and transfection efficiency increased when human retinal pigment epithelial (ARPE-19) cells were exposed to niosphingoplexes. Endocytosis via caveolae decreased in the case of niosphingoplexes, which showed higher co-localization with lysosomal compartment, and endosomal escape properties. Moreover, niosphingoplexes transfected not only primary central nervous system cells, but also different cells in mouse retina, depending on the administration route, and brain cortex. These preliminary results suggest that niosphingosomes represent a promising non-viral vector formulation purposed for the treatment of both retinal and brain diseases by gene therapy approach.
Asunto(s)
Encéfalo , Técnicas de Transferencia de Gen , Vectores Genéticos/biosíntesis , Liposomas/farmacología , Epitelio Pigmentado de la Retina , Esfingolípidos/farmacología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Supervivencia Celular , Mezclas Complejas/farmacología , Emulsiones/farmacología , Terapia Genética/métodos , Humanos , Ratones , Plásmidos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patologíaRESUMEN
Looked at from the genetic point-of-view cancer represents a daunting and, frankly, confusing multiplicity of diseases (at least 100) that require an equally large variety of therapeutic strategies and substances designed to treat the particular tumor. However, when analyzed phenotypically cancer is a relatively uniform disease of very conserved 'hallmark' behaviors across the entire spectrum of tissue and genetic differences [D. Hanahan, R.A. Weinberg, Hallmarks of cancer, Cell 100 (2000) 57-70]. This suggests that cancers do, indeed, share common biochemical and physiological characteristics that are independent of the varied genetic backgrounds, and that there may be a common mechanism underlying both the neoplastic transformation/progression side and the antineoplastic/therapy side of oncology. The challenge of modern oncology is to integrate all the diverse experimental data to create a physiological/metabolic/energetic paradigm that can unite our thinking in order to understand how both neoplastic progression and therapies function. This reductionist view gives the hope that, as in chemistry and physics, it will possible to identify common underlying driving forces that define a tumor and will permit, for the first time, the actual calculated manipulation of their state. That is, a rational therapeutic design. In the present review, we present evidence, obtained from a great number of studies, for a fundamental, underlying mechanism involved in the initiation and evolution of the neoplastic process. There is an ever growing body of evidence that all the important neoplastic phenotypes are driven by an alkalization of the transformed cell, a process which seems specific for transformed cells since the same alkalinization has no effect in cells that have not been transformed. Seen in that light, different fields of cancer research, from etiopathogenesis, cancer cell metabolism and neovascularization, to multiple drug resistance (MDR), selective apoptosis, modern cancer chemotherapy and the spontaneous regression of cancer (SRC) all appear to have in common a pivotal characteristic, the aberrant regulation of hydrogen ion dynamics [S. Harguindey, J.L. Pedraz, R. García Cañero, J. Pérez de Diego, E.J. Cragoe Jr., Hydrogen ion-dependent oncogenesis and parallel new avenues to cancer prevention and treatment using a H+-mediated unifying approach: pH-related and pH-unrelated mechanisms, Crit. Rev. Oncog. 6 (1) (1995) 1-33]. Cancer cells have an acid-base disturbance that is completely different than observed in normal tissues and that increases in correspondence with increasing neoplastic state: an interstitial acid microenvironment linked to an intracellular alkalosis.
Asunto(s)
Neoplasias/etiología , Neoplasias/fisiopatología , Intercambiadores de Sodio-Hidrógeno/fisiología , Animales , Apoptosis/efectos de los fármacos , Transformación Celular Neoplásica , Transformación Celular Viral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos , Humanos , Concentración de Iones de Hidrógeno , Invasividad Neoplásica/fisiopatología , Metástasis de la Neoplasia/fisiopatología , Regresión Neoplásica Espontánea , Neoplasias/terapia , Neovascularización Patológica , Oncogenes/fisiología , Virus Oncogénicos/fisiologíaRESUMEN
The aim of cell microencapsulation technology is to treat multiple diseases in the absence of immunosuppression. Using this technique, cells are immobilized within carefully designed capsules that allow the long-term function of the graft. Although the potential impact of this field is likely to be wide-ranging, the past few years have seen several 'firsts' that have brought the whole technology much closer to a realistic clinical application.