Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(24): e2120083119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666870

RESUMEN

Human pancreatic islets highly express CD59, which is a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein and is required for insulin secretion. How cell-surface CD59 could interact with intracellular exocytotic machinery has so far not been described. We now demonstrate the existence of CD59 splice variants in human pancreatic islets, which have unique C-terminal domains replacing the GPI-anchoring signal sequence. These isoforms are found in the cytosol of ß-cells, interact with SNARE proteins VAMP2 and SNAP25, colocalize with insulin granules, and rescue insulin secretion in CD59-knockout (KO) cells. We therefore named these isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2). Antibodies raised against each isoform revealed that expression of both IRIS-1 and IRIS-2 is significantly lower in islets isolated from human type 2 diabetes (T2D) patients, as compared to healthy controls. Further, glucotoxicity induced in primary, healthy human islets led to a significant decrease of IRIS-1 expression, suggesting that hyperglycemia (raised glucose levels) and subsequent decreased IRIS-1 expression may contribute to relative insulin deficiency in T2D patients. Similar isoforms were also identified in the mouse CD59B gene, and targeted CRISPR/Cas9-mediated knockout showed that these intracellular isoforms, but not canonical CD59B, are involved in insulin secretion from mouse ß-cells. Mouse IRIS-2 is also down-regulated in diabetic db/db mouse islets. These findings establish the endogenous existence of previously undescribed non­GPI-anchored intracellular isoforms of human CD59 and mouse CD59B, which are required for normal insulin secretion.


Asunto(s)
Empalme Alternativo , Diabetes Mellitus , Antígenos CD59/genética , Antígenos CD59/metabolismo , Diabetes Mellitus/genética , Humanos , Secreción de Insulina , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Diabetologia ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743124

RESUMEN

AIMS/HYPOTHESIS: Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS: To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS: Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION: Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY: Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).

3.
Pharm Res ; 30(5): 1409-22, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23371514

RESUMEN

PURPOSE: In vivo and ex vivo inhibition of ectopic activity of clinically used and newly developed sodium channel (NaV) blockers were quantified in the rat spinal nerve ligation (SNL) model using a pharmacokinetic-pharmacodynamic (PKPD) approach and correlated to in vitro NaV1.7 channel inhibition and clinical effective concentrations. METHODS: In vivo, drug exposure and inhibition of ectopic activity were assessed in anaesthetized SNL rats at two dose levels. Ex vivo, compounds were applied at increasing concentrations to dorsal root ganglias isolated from SNL rats. The inhibitory potency (IC 50 ) was estimated using PKPD analysis. In vitro IC 50 was estimated using an electrophysiology-based assay using recombinant rat and human NaV1.7 expressing HEK293 cells. RESULTS: In vivo and ex vivo inhibition of ectopic activity correlated well with the in vitro inhibition on the rat NaV1.7 channel. The estimated IC 50s for inhibition of ectopic activity in the SNL model occurred at similar unbound concentrations as clinical effective concentrations in humans. CONCLUSIONS: Inhibition of ectopic activity in the SNL model could be useful in predicting clinical effective concentrations for novel sodium channel blockers. In addition, in vitro potency could be used for screening, characterization and selection of compounds, thereby reducing the need for in vivo testing.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuralgia/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/sangre , Bloqueadores de los Canales de Sodio/farmacología , Nervios Espinales/efectos de los fármacos , Animales , Células HEK293 , Humanos , Ligadura , Masculino , Ratas , Ratas Sprague-Dawley , Nervios Espinales/cirugía
4.
Bioorg Med Chem Lett ; 22(17): 5618-24, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22832315

RESUMEN

Recent findings showing a relation between mutations in the Na(V)1.7 channel in humans and altered pain sensation has contributed to increase the attractiveness of this ion channel as target for development of potential analgesics. Amido chromanes 1 and 2 were identified as blockers of the Na(V)1.7 channel and analogues with modifications of the 5-substituent and the carboxamide part of the molecule were prepared to establish the structure-activity relationship. Compounds 13 and 29 with good overall in vitro and in vivo rat PK profile were identified. Furthermore, 29 showed in vivo efficacy in a nociceptive pain model.


Asunto(s)
Cromanos/química , Cromanos/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor Nociceptivo/tratamiento farmacológico , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Cromanos/farmacocinética , Cromanos/farmacología , Formaldehído , Humanos , Dolor Nociceptivo/inducido químicamente , Ratas , Relación Estructura-Actividad , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinética
5.
Bioorg Med Chem Lett ; 22(19): 6108-15, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22939696

RESUMEN

The Na(V)1.7 ion channel is an attractive target for development of potential analgesic drugs based on strong genetic links between mutations in the gene coding for the channel protein and inheritable pain conditions. The (S)-N-chroman-3-ylcarboxamide series, exemplified by 1, was used as a starting point for development of new channel blockers, resulting in the phenethyl nicotinamide series. The structure and activity relationship for this series was established and the metabolic issues of early analogues were addressed by appropriate substitutions. Compound 33 displayed acceptable overall in vitro properties and in vivo rat PK profile.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Relación Dosis-Respuesta a Droga , Humanos , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Niacinamida/síntesis química , Niacinamida/química , Ratas , Bloqueadores de los Canales de Sodio/síntesis química , Bloqueadores de los Canales de Sodio/química , Solubilidad , Estereoisomerismo , Relación Estructura-Actividad
6.
Nat Biotechnol ; 40(7): 1042-1055, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35241836

RESUMEN

Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Células Madre Pluripotentes , Animales , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Ratones , Células Madre Pluripotentes/metabolismo
7.
Bioorg Med Chem Lett ; 21(13): 3871-6, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21641215

RESUMEN

Blocking of certain sodium channels is considered to be an attractive mechanism to treat chronic pain conditions. Phenyl isoxazole carbamate 1 was identified as a potent and selective Na(V)1.7 blocker. Structural analogues of 1, both carbamates, ureas and amides, were proven to be useful in establishing the structure-activity relationship and improving ADME related properties. Amide 24 showed a good overall in vitro profile, that translated well to rat in vivo PK.


Asunto(s)
Carbamatos/química , Isoxazoles/química , Isoxazoles/farmacología , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Administración Oral , Animales , Carbamatos/administración & dosificación , Carbamatos/uso terapéutico , Humanos , Bombas de Infusión , Concentración 50 Inhibidora , Isoxazoles/administración & dosificación , Isoxazoles/uso terapéutico , Estructura Molecular , Dolor/tratamiento farmacológico , Ratas , Bloqueadores de los Canales de Sodio/administración & dosificación , Relación Estructura-Actividad
8.
Nat Commun ; 11(1): 1896, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312960

RESUMEN

Glucagon is released from pancreatic α-cells to activate pathways that raise blood glucose. Its secretion is regulated by α-cell-intrinsic glucose sensing and paracrine control through insulin and somatostatin. To understand the inadequately high glucagon levels that contribute to hyperglycemia in type-2 diabetes (T2D), we analyzed granule behavior, exocytosis and membrane excitability in α-cells of 68 non-diabetic and 21 T2D human donors. We report that exocytosis is moderately reduced in α-cells of T2D donors, without changes in voltage-dependent ion currents or granule trafficking. Dispersed α-cells have a non-physiological V-shaped dose response to glucose, with maximal exocytosis at hyperglycemia. Within intact islets, hyperglycemia instead inhibits α-cell exocytosis, but not in T2D or when paracrine inhibition by insulin or somatostatin is blocked. Surface expression of somatostatin-receptor-2 is reduced in T2D, suggesting a mechanism for the observed somatostatin resistance. Thus, elevated glucagon in human T2D may reflect α-cell insensitivity to paracrine inhibition at hyperglycemia.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Exocitosis/fisiología , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Insulina/metabolismo , Imagen Óptica , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo
9.
Assay Drug Dev Technol ; 6(2): 167-79, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18078380

RESUMEN

Ion channels are challenging targets in the early phases of the drug discovery process, especially because of the lack of technologies available to screen large numbers of compounds in functionally relevant assays. The electrophysiological patch-clamp technique, which is the gold standard for studying ion channels, has low throughput and is not amenable to screening large numbers of compounds. However, for random high-throughput screening (HTS) of compounds against ion channel targets, a number of functional cellular assays have become available during the last few years. Here we use the sodium channel NaV1.7 stably expressed in human embryonic kidney 293 cells and compare three HTS assays-a Li flux atomic absorption spectroscopy (AAS) assay, a fluorescent imaging plate reader (FLIP, Molecular Devices, Sunnyvale, CA) membrane potential assay, and a fluorescence resonance energy transfer (FRET)-based membrane potential assay-to an automated electrophysiological assay (the Ionworks HT [Molecular Devices] platform) and characterize 11 known NaV inhibitors. Our results show that all three HTS assays are suitable for identification of NaV1.7 inhibitors, but as an HTS assay the Li-AAS assay is more robust with higher Z' values than the FLIPR and FRET-based membrane potential assays. Furthermore, there was a better correlation between the Ionworks assay and the Li-AAS assay regarding the potency of the NaV inhibitors investigated. This paper describes the first comparison between all the HTS assays available today to study voltage-gated NaVs, and the results suggest that the Li-AAS assay is more suited as a first HTS assay when starting an NaV drug discovery campaign.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Línea Celular , Células Cultivadas , Interpretación Estadística de Datos , Electrofisiología , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Humanos , Litio/química , Litio/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Canal de Sodio Activado por Voltaje NAV1.7 , Espectrofotometría Atómica
10.
J Gen Physiol ; 150(8): 1215-1230, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30002162

RESUMEN

Voltage-gated ion channels are key molecules for the generation of cellular electrical excitability. Many pharmaceutical drugs target these channels by blocking their ion-conducting pore, but in many cases, channel-opening compounds would be more beneficial. Here, to search for new channel-opening compounds, we screen 18,000 compounds with high-throughput patch-clamp technology and find several potassium-channel openers that share a distinct biaryl-sulfonamide motif. Our data suggest that the negatively charged variants of these compounds bind to the top of the voltage-sensor domain, between transmembrane segments 3 and 4, to open the channel. Although we show here that biaryl-sulfonamide compounds open a potassium channel, they have also been reported to block sodium and calcium channels. However, because they inactivate voltage-gated sodium channels by promoting activation of one voltage sensor, we suggest that, despite different effects on the channel gates, the biaryl-sulfonamide motif is a general ion-channel activator motif. Because these compounds block action potential-generating sodium and calcium channels and open an action potential-dampening potassium channel, they should have a high propensity to reduce excitability. This opens up the possibility to build new excitability-reducing pharmaceutical drugs from the biaryl-sulfonamide scaffold.


Asunto(s)
Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Células CHO , Cricetulus , Ensayos Analíticos de Alto Rendimiento , Cinética , Bibliotecas de Moléculas Pequeñas
11.
J Clin Invest ; 127(6): 2353-2364, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28481223

RESUMEN

Loss of first-phase insulin secretion is an early sign of developing type 2 diabetes (T2D). Ca2+ entry through voltage-gated L-type Ca2+ channels triggers exocytosis of insulin-containing granules in pancreatic ß cells and is required for the postprandial spike in insulin secretion. Using high-resolution microscopy, we have identified a subset of docked insulin granules in human ß cells and rat-derived clonal insulin 1 (INS1) cells for which localized Ca2+ influx triggers exocytosis with high probability and minimal latency. This immediately releasable pool (IRP) of granules, identified both structurally and functionally, was absent in ß cells from human T2D donors and in INS1 cells cultured in fatty acids that mimic the diabetic state. Upon arrival at the plasma membrane, IRP granules slowly associated with 15 to 20 L-type channels. We determined that recruitment depended on a direct interaction with the synaptic protein Munc13, because expression of the II-III loop of the channel, the C2 domain of Munc13-1, or of Munc13-1 with a mutated C2 domain all disrupted L-type channel clustering at granules and ablated fast exocytosis. Thus, rapid insulin secretion requires Munc13-mediated recruitment of L-type Ca2+ channels in close proximity to insulin granules. Loss of this organization underlies disturbed insulin secretion kinetics in T2D.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Gránulos Citoplasmáticos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Señalización del Calcio , Células Cultivadas , Diabetes Mellitus Tipo 2/patología , Humanos , Secreción de Insulina , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas
12.
FASEB J ; 19(2): 301-3, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15572434

RESUMEN

There is little information available concerning the link between the ryanodine (RY) receptors and the downstream Ca(2+) signaling events in beta-cells. In fura-2 loaded INS-1E cells, activation of RY receptors by 9-methyl 5,7-dibromoeudistomin D (MBED) caused a rapid rise of [Ca(2+)]i followed by a plateau and repetitive [Ca(2+)]i spikes on the plateau. The [Ca(2+)]i plateau was abolished by omission of extracellular Ca(2+) and by SKF 96365. In the presence of SKF 96365, MBED produced a transient increase of [Ca(2+)]i, which was abolished by thapsigargin. Activation of RY receptors caused Ca(2+) entry even when the ER Ca(2+) pool was depleted by thapsigargin. The [Ca(2+)]i plateau was not inhibited by nimodipine or ruthenium red, but was inhibited by membrane depolarization, La(3+), Gd(3+), niflumic acid, and 2-aminoethoxydiphenyl borate, agents that inhibit the transient receptor potential channels. The [Ca(2+)]i spikes were inhibited by nimodipine and ryanodine, indicating that they were due to Ca(2+) influx through the voltage-gated Ca(2+) channels and Ca(2+)-induced Ca(2+) release (CICR). Activation of RY receptors depolarized membrane potential as measured by patch clamp. Thus, activation of RY receptors leads to coherent changes in Ca(2+) signaling, which includes activation of TRP-like channels, membrane depolarization, activation of the voltage-gated Ca(2+) channels and CICR.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Línea Celular Tumoral , Insulinoma/química , Insulinoma/metabolismo , Insulinoma/patología , Islotes Pancreáticos/química , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar
13.
Sci Rep ; 5: 13278, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26299574

RESUMEN

Voltage-gated ion channels generate cellular excitability, cause diseases when mutated, and act as drug targets in hyperexcitability diseases, such as epilepsy, cardiac arrhythmia and pain. Unfortunately, many patients do not satisfactorily respond to the present-day drugs. We found that the naturally occurring resin acid dehydroabietic acid (DHAA) is a potent opener of a voltage-gated K channel and thereby a potential suppressor of cellular excitability. DHAA acts via a non-traditional mechanism, by electrostatically activating the voltage-sensor domain, rather than directly targeting the ion-conducting pore domain. By systematic iterative modifications of DHAA we synthesized 71 derivatives and found 32 compounds more potent than DHAA. The most potent compound, Compound 77, is 240 times more efficient than DHAA in opening a K channel. This and other potent compounds reduced excitability in dorsal root ganglion neurons, suggesting that resin-acid derivatives can become the first members of a new family of drugs with the potential for treatment of hyperexcitability diseases.


Asunto(s)
Abietanos/farmacología , Activación del Canal Iónico/efectos de los fármacos , Neuronas/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , Resinas Sintéticas/farmacología , Electricidad Estática , Abietanos/química , Animales , Células CHO , Cricetinae , Cricetulus , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Halógenos/química , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/efectos de los fármacos , Ratones , Protones , Xenopus
14.
Peptides ; 44: 40-6, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23523779

RESUMEN

The spider venom peptide Huwentoxin-IV (HwTx-IV) 1 is a potent antagonist of hNav1.7 (IC50 determined herein as 17 ± 2 nM). Nav1.7 is a voltage-gated sodium channel involved in the generation and conduction of neuropathic and nociceptive pain signals. We prepared a number of HwTx-IV analogs as part of a structure-function study into Nav1.7 antagonism. The inhibitory potency of these analogs was determined by automated electrophysiology and is reported herein. In particular, the native residues Glu(1), Glu(4), Phe(6) and Tyr(33) were revealed as important activity modulators and several peptides bearing mutations in these positions showed significantly increased potency on hNav1.7 while maintaining the original selectivity profile of the wild-type peptide 1 on hNav1.5. Peptide 47 (Gly(1), Gly(4), Trp(33)-HwTx) demonstrated the largest potency increase on hNav1.7 (IC50 0.4 ± 0.1 nM).


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Venenos de Araña/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Potenciales de la Membrana/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Venenos de Araña/síntesis química , Venenos de Araña/química , Arañas , Relación Estructura-Actividad , Bloqueadores del Canal de Sodio Activado por Voltaje/síntesis química , Bloqueadores del Canal de Sodio Activado por Voltaje/química
15.
Comb Chem High Throughput Screen ; 15(9): 713-20, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22934951

RESUMEN

Congenital Insensitivity to Pain (CIP) is a loss of function mutation resulting in a truncated NaV1.7 protein, suggesting a pivotal role in pain signaling and rendering it an important pharmaceutical target for multiple pain conditions. The structural homology in the NaV-channel family makes it challenging to design effective analgesic compounds without inducing for example cardiotoxicity or seizure liabilities. An additional approach to structural isoform selectivity is to identify compounds with use- or state-dependent profiles, i.e. inhibition efficacy based on the gating of the ion channel. In general nerve cells in damaged or inflamed tissue are more depolarized and electrically active compared to healthy nerve cells in for instance the heart. This observation has led to the design of two types of screening protocols emulating the voltage condition of peripheral neurons or cardiac tissue. The two voltage protocols have been developed to identify both use- and state-dependent antagonists. In this paper we describe an attempt to merge the two different protocols into one to increase screening efficacy, while retaining relevant state- and use-dependent pharmacology. The new protocol is constructed of two stimulation pulses and a slow voltage ramp for simultaneous assessment of resting and state-dependent block. By comparing all protocols we show that the new protocol indeed filter compounds for state-dependence and increase the prediction power of selecting use-dependent compounds.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Células Cultivadas , Humanos , Estructura Molecular , Relación Estructura-Actividad
16.
J Med Chem ; 55(15): 6866-80, 2012 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-22770500

RESUMEN

The voltage-gated sodium channel Na(V)1.7 is believed to be a critical mediator of pain sensation based on clinical genetic studies and pharmacological results. Clinical utility of nonselective sodium channel blockers is limited due to serious adverse drug effects. Here, we present the optimization, structure-activity relationships, and in vitro and in vivo characterization of a novel series of Na(V)1.7 inhibitors based on the oxoisoindoline core. Extensive studies with focus on optimization of Na(V)1.7 potency, selectivity over Na(V)1.5, and metabolic stability properties produced several interesting oxoisoindoline carboxamides (16A, 26B, 28, 51, 60, and 62) that were further characterized. The oxoisoindoline carboxamides interacted with the local anesthetics binding site. In spite of this, several compounds showed functional selectivity versus Na(V)1.5 of more than 100-fold. This appeared to be a combination of subtype and state-dependent selectivity. Compound 28 showed concentration-dependent inhibition of nerve injury-induced ectopic in an ex vivo DRG preparation from SNL rats. Compounds 16A and 26B demonstrated concentration-dependent efficacy in preclinical behavioral pain models. The oxoisoindoline carboxamides series described here may be valuable for further investigations for pain therapeutics.


Asunto(s)
Amidas/síntesis química , Analgésicos/síntesis química , Isoindoles/síntesis química , Dolor/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/síntesis química , Canales de Sodio/fisiología , Amidas/farmacocinética , Amidas/farmacología , Analgésicos/farmacocinética , Analgésicos/farmacología , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/etiología , Células CHO , Carragenina , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/etiología , Cricetinae , Cricetulus , Células HEK293 , Humanos , Isoindoles/farmacocinética , Isoindoles/farmacología , Masculino , Microsomas Hepáticos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7 , Dolor/etiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacocinética , Bloqueadores de los Canales de Sodio/farmacología , Solubilidad , Nervios Espinales/lesiones , Relación Estructura-Actividad
17.
CNS Neurol Disord Drug Targets ; 7(2): 122-8, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18537641

RESUMEN

Ion channels are at present the third biggest target class in drug discovery. Primary research is continually uncovering potential new ion channel targets in indications such as cancer, diabetes and respiratory diseases, as well as the more established fields of pain, cardiovascular disease, and neurological disorders. Despite the physiological significance and therapeutic relevance in a wide variety of biological systems, ion channels still remain under exploited as drug targets. This is to a large extent resulting from the historical lack of screening technologies to provide the throughput and quality of data required to support medicinal chemistry. Although technical challenges still lie ahead, this historic bottleneck in ion channel drug discovery is now being overcome by novel technologies that can be integrated into lead generation stages of ion channel drug discovery to allow the development of novel therapeutic agents. This review describes the variety of technologies available for ion channel screening and discusses the opportunities these technologies provide. The challenges that remain to be addressed are highlighted.


Asunto(s)
Evaluación Preclínica de Medicamentos/tendencias , Canales Iónicos/efectos de los fármacos , Animales , Evaluación Preclínica de Medicamentos/métodos , Electrofisiología , Colorantes Fluorescentes , Humanos
18.
Hum Mol Genet ; 16(17): 2114-21, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17597096

RESUMEN

The general lack of pain experience is a rare occurrence in humans, and the molecular causes for this phenotype are not well understood. Here we have studied a Canadian family from Newfoundland with members who exhibit a congenital inability to experience pain. We have mapped the locus to a 13.7 Mb region on chromosome 2q (2q24.3-2q31.1). Screening of candidate genes in this region identified a protein-truncating mutation in SCN9A, which encodes for the voltage-gated sodium channel Na(v)1.7. The mutation is a C-A transversion at nucleotide 984 transforming the codon for tyrosine 328 to a stop codon. The predicted product lacks all pore-forming regions of Na(v)1.7. Indeed, expression of this altered gene in a cell line did not produce functional responses, nor did it cause compensatory effects on endogenous voltage-gated sodium currents when expressed in ND7/23 cells. Because a homozygous knockout of Na(v)1.7 in mice has been shown to be lethal, we explored why a deficiency of Na(v)1.7 is non-lethal in humans. Expression studies in monkey, human, mouse and rat tissue indicated species-differences in the Na(v)1.7 expression profile. Whereas in rodents the channel was strongly expressed in hypothalamic nuclei, only weak mRNA levels were detected in this area in primates. Furthermore, primate pituitary and adrenal glands were devoid of signal, whereas these two glands were mRNA-positive in rodents. This species difference may explain the non-lethality of the observed mutation in humans. Our data further establish Na(v)1.7 as a critical element of peripheral nociception in humans.


Asunto(s)
Codón de Terminación/genética , Mutación , Insensibilidad Congénita al Dolor/genética , Canales de Sodio/genética , Animales , Secuencia de Bases , Encéfalo/metabolismo , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Modelos Biológicos , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.7 , Dolor/genética , Dolor/fisiopatología , Insensibilidad Congénita al Dolor/fisiopatología , Linaje , Fenotipo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Canales de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA