RESUMEN
Potential events of allopolyploidy may be indicated by incongruences between separate phylogenies based on plastid and nuclear gene sequences. We sequenced two plastid regions and two nuclear ribosomal regions for 34 ingroup taxa in Fragariinae (Rosaceae), and six outgroup taxa. We found five well supported incongruences that might indicate allopolyploidy events. The incongruences involved Aphanes arvensis, Potentilla miyabei, Potentilla cuneata, Fragaria vesca/moschata, and the Drymocallis clade. We evaluated the strength of conflict and conclude that allopolyploidy may be hypothesised in the four first cases. Phylogenies were estimated using Bayesian inference and analyses were evaluated using convergence diagnostics. Taxonomic implications are discussed for genera such as Alchemilla, Sibbaldianthe, Chamaerhodos, Drymocallis and Fragaria, and for the monospecific Sibbaldiopsis and Potaninia that are nested inside other genera. Two orphan Potentilla species, P. miyabei and P. cuneata are placed in Fragariinae. However, due to unresolved topological incongruences they are not reclassified in any genus.
Asunto(s)
Evolución Molecular , Plastidios , Poliploidía , Rosaceae/genética , Núcleo Celular/genética , ADN de Plantas/genética , Especiación Genética , Filogenia , Plastidios/genética , Rosaceae/clasificación , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
The natural repair of osteochondral defects can be enhanced with biocompatible, biodegradable and bioactive materials that provide structural support and molecular cuing to stimulate repair. Since bone marrow contains osteochondral progenitor cells and bioactive agents, it is hypothesized that the combination of scaffold and bone marrow would be a superior composite material for osteochondral repair. This hypothesis will be tested by comparing the outcome of osteochondral defects filled with a fibronectin-coated hyaluronan-based sponge (ACP) with or without autologous bone marrow. Thirty-three 4-month-old rabbits received 3-mm diameter osteochondral defects that were then filled with ACP loaded or not with autologous bone marrow. Rabbits were sacrificed at 2, 3, 4, 12, and 24 weeks after surgery and the condyles processed for histologic and immunohistochemical evaluation. The defects were graded with a histologic scoring scale. Except for the 3-week specimens, the histologic appearance of the defects was similar in both groups. Four weeks after surgery, the defects were filled with bone with a top layer of cartilage well integrated with the adjacent cartilage. Twelve and 24 weeks after surgery, the defects again showed bone filling. The primary difference between the 4-week samples and the 12- and 24-week samples was that the layer of cartilage that appeared to be thinner than the adjacent cartilage. At each harvest time, the overall histologic scores of the specimens did not reveal statistical differences between the treatment groups. However, as revealed by the results of the 3-week sacrifices, bone marrow loading appeared to accelerate the first stages of the repair process. The fibronectin-coated hyaluronan-based scaffold appears to organize the natural response and facilitate the integration of the neo-cartilage with the adjacent tissue. The fundamental tissue engineering principles derived from this study should provide guidelines for the development of comparable clinical reconstructive therapies.
Asunto(s)
Materiales Biocompatibles , Trasplante de Médula Ósea , Cartílago Articular/patología , Ácido Hialurónico , Trasplante Autólogo , Animales , Células de la Médula Ósea/patología , Trasplante de Médula Ósea/métodos , Cartílago Articular/lesiones , Diferenciación Celular , Fibronectinas , Inmunohistoquímica , Microesferas , ConejosRESUMEN
Several naturally occurring hybrids in Potentilla (Rosaceae) have been reported, but no molecular evidence has so far been available to test these hypotheses of hybridization. We have compared a nuclear and a chloroplast gene tree to identify topological incongruences that may indicate hybridization events in the genus. Furthermore, the monophyly and phylogenetic position of the proposed segregated genera Argentina, Ivesia and Horkelia have been tested. The systematic signal from the two morphological characters, style- and anther shape, has also been investigated by ancestral state reconstruction, to elucidate how well these characters concur with the results of the molecular phylogenies. Six major clades, Anserina, Alba, Fragarioides, Reptans, ivesioid and Argentea, have been identified within genus Potentilla. Horkelia, Ivesia and Horkeliella (the ivesioid clade), form a monophyletic group nested within Potentilla. Furthermore, the origin of the proposed segregated genus Argentina (the Anserina clade) is uncertain but not in conflict with a new generic status of the group. We also found style morphology to be an informative character that reflects the phylogenetic relationships within Potentilla. Five well-supported incongruences were found between the nuclear and the chloroplast phylogenies, and three of these involved polyploid taxa. However, further investigations, using low copy molecular markers, are required to infer the phylogeny of these species and to test the hypothesis of hybrid origin.
RESUMEN
PURPOSE: To estimate regional myocardial strain rate, with reduced sensitivity to noise and velocities outside the region of interest, and provide a visualization of the spatial variation of the obtained tensor field within the myocardium. MATERIALS AND METHODS: Myocardial velocities were measured using two-dimensional phase contrast velocity mapping. Velocity gradients were estimated using normalized convolution and the calculated 2D strain rate tensor field was visualized using a glyph representation. Validation utilized a numerical phantom with known strain rate distribution. Strain rate glyph visualizations were created for normal myocardium in both systole and diastole and compared to a patient with an anteroseptal infarction. RESULTS: In the phantom study the strain rate calculated with normalized convolution showed a very good agreement with the analytic solution, while traditional methods for gradient estimation were shown to be sensitive to both noise and surrounding velocity data. Normal myocardium showed a homogenous strain rate distribution, while a heterogeneous strain rate can be clearly seen in the patient data. CONCLUSION: The proposed approach for quantification and visualization of the regional myocardial strain rate can provide an objective measure of regional myocardial contraction and relaxation that may be valuable for the assessment of myocardial heart disease.