Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 23(1): 759, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402977

RESUMEN

BACKGROUND: The cold pressor test (CPT) is a widely used pain provocation test to investigate both pain tolerance and cardiovascular responses. We hypothesize, that performing multi-omic analyses during CPT gives the opportunity to home in on molecular mechanisms involved. Twenty-two females were phenotypically assessed before and after a CPT, and blood samples were taken. RNA-Sequencing, steroid profiling and untargeted metabolomics were performed. Each 'omic level was analyzed separately at both single-feature and systems-level (principal component [PCA] and partial least squares [PLS] regression analysis) and all 'omic levels were combined using an integrative multi-omics approach, all using the paired-sample design. RESULTS: We showed that PCA was not able to discriminate time points, while PLS did significantly distinguish time points using metabolomics and/or transcriptomic data, but not using conventional physiological measures. Transcriptomic and metabolomic data revealed at feature-, systems- and integrative- level biologically relevant processes involved during CPT, e.g. lipid metabolism and stress response. CONCLUSION: Multi-omics strategies have a great potential in pain research, both at feature- and systems- level. Therefore, they should be exploited in intervention studies, such as pain provocation tests, to gain knowledge on the biological mechanisms involved in complex traits.


Asunto(s)
Metabolómica , Transcriptoma , Humanos , Análisis de los Mínimos Cuadrados , Dolor
2.
Eur Biophys J ; 50(3-4): 653-660, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33864492

RESUMEN

NanoTemper Monolith instruments have gained enormous popularity for measuring molecular interactions both in academia and industry. The underlying technology has been extensively reviewed along with its assumptions, limitations, and applications (Scheuermann et al., Anal Biochem 496:79-93, 2016). Several assumptions about the technique such as the extent of thermal deviations generated by the infrared laser and the thermophoretic foundation of the measured signal have been revised during the last decade. We present here in this letter the experience gathered in scientific service facilities about this technique and make scientists aware of possible pitfalls with the intention to promote knowledge and good practice throughout the scientific community.


Asunto(s)
Fenómenos Biofísicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA