Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(33): 4475-4478, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38563956

RESUMEN

A hydrogen-bonded organic framework (HOF) consisting of a 9,10-diphenylanthracene carboxylic derivative, DPACOOH, was developed for solid state triplet-triplet annihilation upconversion (TTA-UC). The HOF sample shows a 70% increase in upconversion quantum yield and a lower threshold value of 126.0 mW cm-2 compared to those of the disordered powder sample, due to a 43% longer triplet diffusion length in HOF than that in the powder sample.

2.
Adv Mater ; 35(13): e2208389, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36639351

RESUMEN

Organic light-emitting transistors (OLETs), a kind of highly integrated and minimized optoelectronic device, demonstrate great potential applications in various fields. The construction of high-performance OLETs requires the integration of high charge carrier mobility, strong emission, and high triplet exciton utilization efficiency in the active layer. However, it remains a significant long-term challenge, especially for single component active layer OLETs. Herein, the successful harvesting of triplet excitons in a high mobility emissive molecule, 2,6-diphenylanthracene (DPA), through the triplet-triplet annihilation process is demonstrated. By incorporating a highly emissive guest into the DPA host system, an obvious increase in photoluminescence efficiency along with exciton utilization efficiency results in an obvious enhancement of external quantum efficiency of 7.2 times for OLETs compared to the non-doped devices. Moreover, well-tunable multi-color electroluminescence, especially white emission with Commission Internationale del'Eclairage  of (0.31, 0.35), from OLETs is also achieved by modulating the doping concentration with a controlled energy transfer process. This work opens a new avenue for integrating strong emission and efficient exciton utilization in high-mobility organic semiconductors for high-performance OLETs and advancing their related functional device applications.

3.
Phytomedicine ; 85: 153401, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33191068

RESUMEN

BACKGROUND: The Coronavirus disease 2019 pneumonia broke out in 2019 (COVID-19) and spread rapidly, which causes serious harm to the health of people and a huge economic burden around the world. PURPOSE: In this study, the network pharmacology, molecular docking and surface plasmon resonance technology (SPR) were used to explore the potential compounds and interaction mechanism in the Toujie Quwen Granules (TQG) for the treatment of coronavirus pneumonia 2019. STUDY DESIGN: The chemical constituents and compound targets of Lonicerae Japonicae Flos, Pseudostellariae Radix, Artemisia Annua L, Peucedani Radix, Forsythiae Fructus, Scutellariae Radix, Hedysarum Multijugum Maxim, Isatidis Folium, Radix Bupleuri, Fritiliariae Irrhosae Bulbus, Cicadae Periostracum, Poria Cocos Wolf, Pseudobulbus Cremastrae Seu Pleiones, Mume Fructus, Figwort Root and Fritillariae Thunbrgii Bulbus in TQG were searched. The target name was translated to gene name using the UniProt database and then the Chinese medicine-compound-target network was constructed. Protein-protein interaction network (PPI), Gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the core targets were performed in the Metascape to predict its mechanism. The top 34 compounds in the Chinese medicine-compound-target network were docked with SARS-CoV-2 3CL enzyme and SARS--CoV--2 RNA-dependent RNA polymerase (RdRp) and then the 13 compounds with lowest affinity score were docked with angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 Spike protein and interleukin 6 to explore its interaction mechanism. Lastly, SPR experiments were done using the quercetin, astragaloside IV, rutin and isoquercitrin, which were screened from the Chinese medicine-compound-target network and molecular docking. RESULTS: The Chinese medicine-compound-target network includes 16 medicinal materials, 111 compounds and 298 targets, in which the degree of PTGS2, TNF and IL-6 is higher compared with other targets and which are the disease target exactly. The result of GO function enrichment analysis included the response to the molecule of bacterial origin, positive regulation of cell death, apoptotic signaling pathway, cytokine-mediated signaling pathway, cytokine receptor binding and so on. KEGG pathway analysis enrichment revealed two pathways: signaling pathway- IL-17 and signaling pathway- TNF. The result of molecular docking showed that the affinity score of compounds including quercetin, isoquercitrin, astragaloside IV and rutin is higher than other compounds. In addition, the SPR experiments revealed that the quercetin and isoquercitrin were combined with SARS-CoV-2 Spike protein rather than Angiotensin-converting enzyme 2, while astragaloside IV and rutin were combined with ACE2 rather than SARS-CoV-2 Spike protein. CONCLUSION: TQG may have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation related targets and pathways, in the way of multi-component, multi-target and multi-pathway.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , SARS-CoV-2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/química , Ontología de Genes , Humanos , Interleucina-6/química , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Mapas de Interacción de Proteínas , Glicoproteína de la Espiga del Coronavirus/química , Resonancia por Plasmón de Superficie , Tratamiento Farmacológico de COVID-19
4.
J Phys Chem Lett ; 12(39): 9525-9530, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34559971

RESUMEN

Triplet-triplet annihilation (TTA) upconversion has shown promising potentials in the augmentation of solar energy conversion. However, challenging issues exist in improving TTA upconversion efficiencies in solid-states, one of which is the back energy transfer from upconverted singlet annihilators to sensitizers, resulting in decreasing upconversion emission. Here we present a light-harvesting molecular wire consisting of dendrons with 9,10-diphenylanthracene derivatives (DPAEH) at the periphery and p-phenylene ethynylene oligomers (PPE) as the wire core. The peripheral DPAEH antenna funnels singlet excitonic energy to the wire on a 12 ps time scale. Incorporating the molecular wire into the TTA upconversion solid consisting of the DPAEH annihilator and the porphyrin sensitizer evidently improves the upconversion quantum yield from 1.5% to 2.7% upon 532 nm excitation by suppressing the back energy transfer from the singlet annihilator to the sensitizer. This finding offers a potential route to use a singlet energy light-harvesting architecture for enhancing TTA upconversion.


Asunto(s)
Energía Solar , Antracenos/química , Transferencia de Energía , Porfirinas/química , Espectrometría de Fluorescencia
5.
Sci Total Environ ; 719: 137445, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32112947

RESUMEN

In recent years, particulate matter (PM) air pollution has become a significant and growing public health problem in China. In this study, the daily PM2.5 exposure level at a spatial resolution of 100 km2 was simulated based on the data of 1328 monitoring sites and the Voronoi Neighborhood Averaging (VNA) interpolation method. The results reveal that the daily mean PM2.5 concentration reduced from 47.82 µg/m3 (2016) to 40.87 µg/m3 (2018), a reduction of 14.53%. We first calculated the heath impacts and economic benefits of this reduction (Scenario 1) by using Environmental Benefits Mapping and Analysis Program (BenMAP). The estimated avoided premature mortalities for all-cause, cardiovascular diseases, respiratory diseases, and lung cancer were in the range of 7214 to 81,681 cases (total of 154,176 cases). The estimated economic benefits based on willingness to pay (WTP) ranged from 3.96 to 44.85 billion RMB (total of 84.66 billion RMB). Moreover, the PM2.5 concentration in the control scenario was rolled back to the Grade I standards (35 µg/m3, Scenario 2). The avoided deaths are in the range of 58,820 to 590,464 cases (total of 1,217,671 cases). The estimated monetary value of the avoided cases of all health endpoints range from 36.63 to 367.66 billion RMB based on WTP (total of 758.21 billion RMB). In addition, the spatial autocorrelation analysis reveals that the distribution of both avoided premature mortality and economic benefits exhibit a certain spatial aggregation.


Asunto(s)
Salud Pública , Contaminantes Atmosféricos , Contaminación del Aire , China , Exposición a Riesgos Ambientales , Material Particulado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA