Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Biol Chem ; 298(3): 101700, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35143843

RESUMEN

Actin filament maintenance is critical for both normal cell homeostasis and events associated with malignant transformation. The ADP-ribosylation factor GTPase-activating protein ASAP1 regulates the dynamics of filamentous actin-based structures, including stress fibers, focal adhesions, and circular dorsal ruffles. Here, we have examined the molecular basis for ASAP1 association with actin. Using a combination of structural modeling, mutagenesis, and in vitro and cell-based assays, we identify a putative-binding interface between the N-Bin-Amphiphysin-Rvs (BAR) domain of ASAP1 and actin filaments. We found that neutralization of charges and charge reversal at positions 75, 76, and 79 of ASAP1 reduced the binding of ASAP1 BAR-pleckstrin homology tandem to actin filaments and abrogated actin bundle formation in vitro. In addition, overexpression of actin-binding defective ASAP1 BAR-pleckstrin homology [K75, K76, K79] mutants prevented cellular actin remodeling in U2OS cells. Exogenous expression of [K75E, K76E, K79E] mutant of full-length ASAP1 did not rescue the reduction of cellular actin fibers consequent to knockdown of endogenous ASAP1. Taken together, our results support the hypothesis that the lysine-rich cluster in the N-BAR domain of ASAP1 is important for regulating actin filament organization.


Asunto(s)
Citoesqueleto de Actina , Actinas , Proteínas Adaptadoras Transductoras de Señales , Proteínas Activadoras de GTPasa , Factores de Ribosilacion-ADP/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Lisina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Dominios Proteicos
2.
J Biol Chem ; 294(46): 17354-17370, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31591270

RESUMEN

Arf GAP with Src homology 3 domain, ankyrin repeat, and pleckstrin homology (PH) domain 1 (ASAP1) is a multidomain GTPase-activating protein (GAP) for ADP-ribosylation factor (ARF)-type GTPases. ASAP1 affects integrin adhesions, the actin cytoskeleton, and invasion and metastasis of cancer cells. ASAP1's cellular function depends on its highly-regulated and robust ARF GAP activity, requiring both the PH and the ARF GAP domains of ASAP1, and is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). The mechanistic basis of PIP2-stimulated GAP activity is incompletely understood. Here, we investigated whether PIP2 controls binding of the N-terminal extension of ARF1 to ASAP1's PH domain and thereby regulates its GAP activity. Using [Δ17]ARF1, lacking the N terminus, we found that PIP2 has little effect on ASAP1's activity. A soluble PIP2 analog, dioctanoyl-PIP2 (diC8PIP2), stimulated GAP activity on an N terminus-containing variant, [L8K]ARF1, but only marginally affected activity on [Δ17]ARF1. A peptide comprising residues 2-17 of ARF1 ([2-17]ARF1) inhibited GAP activity, and PIP2-dependently bound to a protein containing the PH domain and a 17-amino acid-long interdomain linker immediately N-terminal to the first ß-strand of the PH domain. Point mutations in either the linker or the C-terminal α-helix of the PH domain decreased [2-17]ARF1 binding and GAP activity. Mutations that reduced ARF1 N-terminal binding to the PH domain also reduced the effect of ASAP1 on cellular actin remodeling. Mutations in the ARF N terminus that reduced binding also reduced GAP activity. We conclude that PIP2 regulates binding of ASAP1's PH domain to the ARF1 N terminus, which may partially regulate GAP activity.


Asunto(s)
Factor 1 de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Fosfatidilinositol 4,5-Difosfato/genética , Factor 1 de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/química , Actinas/química , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Humanos , Neoplasias/genética , Fosfatidilinositol 4,5-Difosfato/química , Dominios Homólogos a Pleckstrina/genética , Mutación Puntual/genética , Unión Proteica/genética
3.
Biol Cell ; 110(12): 257-270, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30144359

RESUMEN

BACKGROUND INFORMATION: ARAP2, an Arf GTPase-activating protein (Arf GAP) that binds to adaptor protein with PH domain, PTB domain and leucine zipper motifs 1 (APPL1), regulates focal adhesions (FAs). APPL1 affects FA dynamics by regulating Akt. Here, we tested the hypothesis that ARAP2 affects FAs in part by regulating Akt through APPL1. RESULTS: We found that ARAP2 controlled FA dynamics dependent on its enzymatic Arf GAP activity. In some cells, ARAP2 also regulated phosphoAkt (pAkt) levels. However, ARAP2 control of FAs did not require Akt and conversely, the effects on pAkt were independent of FAs. Reducing ARAP2 expression reduced the size and number of FAs in U118, HeLa and MDA-MB-231 cells. Decreasing ARAP2 expression increased pAkt in U118 cells and HeLa cells and overexpressing ARAP2 decreased pAkt in U118 cells; in contrast, ARAP2 had no effect on pAkt in MDA-MB-231 cells. An Akt inhibitor did not block the effect of reduced ARAP2 on FAs in U118. Furthermore, the effect of ARAP2 on Akt did not require Arf GAP activity, which is necessary for effects on FAs and integrin traffic. Altering FAs by other means did not induce the same changes in pAkt as those seen by reducing ARAP2 in U118 cells. In addition, we discovered that ARAP2 and APPL1 had co-ordinated effects on pAkt in U118 cells. Reduced APPL1 expression, as for ARAP2, increased pAkt in U118 and the effect of reduced APPL1 expression was reversed by overexpressing ARAP2. Conversely, the effect of reduced ARAP2 expression was reversed by overexpressing APPL1. ARAP2 is an Arf GAP that has previously been reported to affect FAs by regulating Arf6 and integrin trafficking and to bind to the adaptor proteins APPL1. Here, we report that ARAP2 suppresses pAkt levels in cells co-ordinately with APPL1 and independently of GAP activity and its effect on the dynamic behaviour of FAs. CONCLUSIONS: We conclude that ARAP2 affects Akt signalling in some cells by a mechanism independent of FAs or membrane traffic. SIGNIFICANCE: Our results highlight an Arf GAP-independent function of ARAP2 in regulating Akt activity and distinguish the effect of ARAP2 on Akt from that on FAs and integrin trafficking, which requires regulation of Arf6.


Asunto(s)
Proteínas Portadoras/metabolismo , Adhesiones Focales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citoplasma/metabolismo , Células HeLa , Humanos , Paxillin/metabolismo , Fosforilación
4.
J Biol Chem ; 291(41): 21350-21362, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27531749

RESUMEN

The molecular basis for control of the cytoskeleton by the Arf GTPase-activating protein AGAP1 has not been characterized. AGAP1 is composed of G-protein-like (GLD), pleckstrin homology (PH), Arf GAP, and ankyrin repeat domains. Kif2A was identified in screens for proteins that bind to AGAP1. The GLD and PH domains of AGAP1 bound the motor domain of Kif2A. Kif2A increased GAP activity of AGAP1, and a protein composed of the GLD and PH domains of AGAP1 increased ATPase activity of Kif2A. Knockdown (KD) of Kif2A or AGAP1 slowed cell migration and accelerated cell spreading. The effect of Kif2A KD on spreading could be rescued by expression of Kif2A-GFP or FLAG-AGAP1, but not by Kif2C-GFP. The effect of AGAP1 KD could be rescued by FLAG-AGAP1, but not by an AGAP1 mutant that did not bind Kif2A efficiently, ArfGAP1-HA or Kif2A-GFP. Taken together, the results support the hypothesis that the Kif2A·AGAP1 complex contributes to control of cytoskeleton remodeling involved in cell movement.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Cinesinas/metabolismo , Animales , Bovinos , Células Cultivadas , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Células HeLa , Humanos , Cinesinas/química , Cinesinas/genética
5.
J Biol Chem ; 291(14): 7517-26, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26893376

RESUMEN

ASAP1 regulates F-actin-based structures and functions, including focal adhesions (FAs) and circular dorsal ruffles (CDRs), cell spreading and migration. ASAP1 function requires its N-terminal BAR domain. We discovered that nonmuscle myosin 2A (NM2A) directly bound the BAR-PH tandem of ASAP1in vitro ASAP1 and NM2A co-immunoprecipitated and colocalized in cells. Knockdown of ASAP1 reduced colocalization of NM2A and F-actin in cells. Knockdown of ASAP1 or NM2A recapitulated each other's effects on FAs, cell migration, cell spreading, and CDRs. The NM2A-interacting BAR domain contributed to ASAP1 control of cell spreading and CDRs. Exogenous expression of NM2A rescued the effect of ASAP1 knockdown on CDRs but ASAP1 did not rescue NM2A knockdown defect in CDRs. Our results support the hypothesis that ASAP1 is a positive regulator of NM2A. Given other binding partners of ASAP1, ASAP1 may directly link signaling and the mechanical machinery of cell migration.


Asunto(s)
Actomiosina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/fisiología , Miosina Tipo IIA no Muscular/metabolismo , Transducción de Señal/fisiología , Actomiosina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Miosina Tipo IIA no Muscular/genética , Unión Proteica , Estructura Terciaria de Proteína
6.
J Biol Chem ; 289(44): 30237-30248, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25225293

RESUMEN

Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1 are established regulators of integrin traffic important to cell adhesion and migration. However, the function of Arf6 with ACAP1 cannot explain the range of Arf6 effects on integrin-based structures. We propose that Arf6 has different functions determined, in part, by the associated Arf GAP. We tested this idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We found that ARAP2 and ACAP1 had opposing effects on apparent integrin ß1 internalization. ARAP2 knockdown slowed, whereas ACAP1 knockdown accelerated, integrin ß1 internalization. Integrin ß1 association with adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif (APPL)-positive endosomes and EEA1-positive endosomes was affected by ARAP2 knockdown and depended on ARAP2 GAP activity. ARAP2 formed a complex with APPL1 and colocalized with Arf6 and APPL in a compartment distinct from the Arf6/ACAP1 tubular recycling endosome. In addition, although ACAP1 and ARAP2 each colocalized with Arf6, they did not colocalize with each other and had opposing effects on focal adhesions (FAs). ARAP2 overexpression promoted large FAs, but ACAP1 overexpression reduced FAs. Taken together, the data support a model in which Arf6 has at least two sites of opposing action defined by distinct Arf6 GAPs.


Asunto(s)
Proteínas Portadoras/fisiología , Endosomas/metabolismo , Proteínas Activadoras de GTPasa/fisiología , Receptores de Vitronectina/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endocitosis , Receptores ErbB/metabolismo , Adhesiones Focales/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
7.
J Biol Chem ; 287(21): 17176-17185, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22453919

RESUMEN

AGAPs are a subtype of Arf GTPase-activating proteins (GAPs) with 11 members in humans. In addition to the Arf GAP domain, the proteins contain a G-protein-like domain (GLD) with homology to Ras superfamily proteins and a PH domain. AGAPs bind to clathrin adaptors, function in post Golgi membrane traffic, and have been implicated in glioblastoma. The regulation of AGAPs is largely unexplored. Other enzymes containing GTP binding domains are regulated by nucleotide binding. However, nucleotide binding to AGAPs has not been detected. Here, we found that neither nucleotides nor deleting the GLD of AGAP1 affected catalysis, which led us to hypothesize that the GLD is a protein binding site that regulates GAP activity. Two-hybrid screens identified RhoA, Rac1, and Cdc42 as potential binding partners. Coimmunoprecipitation confirmed that AGAP1 and AGAP2 can bind to RhoA. Binding was mediated by the C terminus of RhoA and was independent of nucleotide. RhoA and the C-terminal peptide from RhoA increased GAP activity specifically for the substrate Arf1. In contrast, a C-terminal peptide from Cdc42 neither bound nor activated AGAP1. Based on these results, we propose that AGAPs are allosterically regulated through protein binding to the GLD domain.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Regulación Alostérica/fisiología , Animales , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/genética , Células HeLa , Humanos , Ratones , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
9.
Biol Cell ; 103(4): 171-84, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21275903

RESUMEN

BACKGROUND INFORMATION: ARAP1 is an Arf (ADP-ribosylation factor)-directed GAP (GTPase-activating protein) that inhibits the trafficking of EGFR (epidermal growth factor receptor) to the early endosome. To further understand the function of ARAP1, we sought to identify proteins that interact with ARAP1. RESULTS: Here we report that ARAP1 associates with the CIN85 (Cbl-interacting protein of 85 kDa). Arg86 and Arg90 of ARAP1 and the SH3 (Src homology 3) domains of CIN85 are necessary for the interaction. We found that a mutant of ARAP1 with reduced affinity for CIN85 does not efficiently rescue the effect of reduced ARAP1 expression on EGFR trafficking to the early endosome. Reduced expression of CIN85 has a similar effect as reduced expression of ARAP1 on traffic of the EGFR. Cbl proteins regulate the endocytic trafficking of the EGFR by mediating ubiquitination of the EGFR. Overexpression of ARAP1 reduced ubiquitination of the EGFR by Cbl and slowed Cbl-dependent degradation of the EGFR. Reduced expression of ARAP1 accelerated degradation of EGFR but did not affect the level of ubiquitination of the receptor that was detected. CONCLUSION: ARAP1 interaction with CIN85 regulates endocytic trafficking of the EGFR and affects ubiquitination of EGFR. We propose a model in which the ARAP1-CIN85 complex drives exit of EGF-EGFR-Cbl complex from a pre-early endosome into a pathway distinct from the early endosome/lysosome pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis , Receptores ErbB/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Proteínas Activadoras de GTPasa/genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas
10.
Mol Cancer Ther ; 20(2): 307-319, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33158997

RESUMEN

Relapsed pediatric rhabdomyosarcomas (RMS) and neuroblastomas (NBs) have a poor prognosis despite multimodality therapy. In addition, the current standard of care for these cancers includes vinca alkaloids that have severe toxicity profiles, further underscoring the need for novel therapies for these malignancies. Here, we show that the small-molecule rigosertib inhibits the growth of RMS and NB cell lines by arresting cells in mitosis, which leads to cell death. Our data indicate that rigosertib, like the vinca alkaloids, exerts its effects mainly by interfering with mitotic spindle assembly. Although rigosertib has the ability to inhibit oncogenic RAS signaling, we provide evidence that rigosertib does not induce cell death through inhibition of the RAS pathway in RAS-mutated RMS and NB cells. However, the combination of rigosertib and the MEK inhibitor trametinib, which has efficacy in RAS-mutated tumors, synergistically inhibits the growth of an RMS cell line, suggesting a new avenue for combination therapy. Importantly, rigosertib treatment delays tumor growth and prolongs survival in a xenograft model of RMS. In conclusion, rigosertib, through its impact on the mitotic spindle, represents a potential therapeutic for RMS.


Asunto(s)
Glicina/análogos & derivados , Neuroblastoma/tratamiento farmacológico , Rabdomiosarcoma/tratamiento farmacológico , Huso Acromático/metabolismo , Sulfonas/uso terapéutico , Apoptosis , Glicina/farmacología , Glicina/uso terapéutico , Humanos , Sulfonas/farmacología
11.
Curr Biol ; 17(8): 722-7, 2007 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-17398097

RESUMEN

The GTPase Arf6 regulates multiple cellular processes, including endocytosis, secretion, phagocytosis, cell adhesion, and cell migration [1, 2]. The Arf6-specific GAP ACAP1 is a negative regulator of Arf6-mediated signaling [3-7]. However, regulation of ACAP1- and Arf6-mediated signaling by other cellular proteins is not well understood. GULP/CED-6 is a phosphotyrosine binding (PTB)-domain-containing adaptor protein linked to engulfment of apoptotic cells [8-13] and to cholesterol homeostasis [14]. Here, we identify a novel role for GULP as a positive regulator of Arf6. Knockdown of GULP decreased cellular Arf6-GTP, whereas GULP overexpression increased cellular Arf6-GTP. At the mechanistic level, GULP influenced Arf6 at four levels. First, GULP bound directly to GDP-bound Arf6 via its PTB domain. Second, GULP associated with the Arf6-GAP ACAP1 at endogenous levels. Third, GULP reversed the Arf6-GTP decrease induced by ACAP1, and countered the ACAP1-mediated inhibition of cell migration. Fourth, GULP, ACAP1, and GDP-bound Arf6 were part of a tripartite complex, suggesting sequestration of ACAP1 as one mechanism of GULP action. Taken together, these data identify GULP as a modifier of cellular Arf6-GTP through regulation of ACAP1. Because PTB-domain-containing adaptor proteins influence endocytosis and trafficking of membrane proteins and cell migration [15, 16], our data support a model wherein PTB-domain-containing adaptor proteins regulate Arf family proteins.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Línea Celular , Cricetinae , Guanosina Difosfato/metabolismo , Células HeLa , Humanos , Ratones , Estructura Terciaria de Proteína
12.
Adv Cancer Res ; 101: 1-28, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19055940

RESUMEN

Arf GAPs are a family of proteins with a common catalytic domain that induces hydrolysis of GTP bound to the small GTP-binding protein Arf. The proteins are otherwise structurally diverse. Several subtypes of Arf GAPs have been found to be targets of oncogenes and to control cell proliferation and cell migration. The latter effects are thought to be mediated by coordinating changes in actin remodeling and membrane traffic. In this chapter, we discuss Arf GAPs that have been linked to oncogenesis and the molecular mechanisms underlying the effects of these proteins in cancer cells. We also discuss the enzymology of the Arf GAPs related to possible targeted inhibition of specific subtypes of Arf GAPs.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias/patología , Factores de Ribosilacion-ADP/química , Animales , Movimiento Celular , Adhesiones Focales , Humanos , Modelos Biológicos , Familia de Multigenes , Invasividad Neoplásica , Estructura Terciaria de Proteína , Transducción de Señal
13.
Curr Biol ; 16(2): 130-9, 2006 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-16431365

RESUMEN

BACKGROUND: Arf GAPs are multidomain proteins that function in membrane traffic by inactivating the GTP binding protein Arf1. Numerous Arf GAPs contain a BAR domain, a protein structural element that contributes to membrane traffic by either inducing or sensing membrane curvature. We have examined the role of a putative BAR domain in the function of the Arf GAP ASAP1. RESULTS: ASAP1's N terminus, containing the putative BAR domain together with a PH domain, dimerized to form an extended structure that bound to large unilamellar vesicles containing acidic phospholipids, properties that define a BAR domain. A recombinant protein containing the BAR domain of ASAP1, together with the PH and Arf GAP domains, efficiently bent the surface of large unilamellar vesicles, resulting in the formation of tubular structures. This activity was regulated by Arf1*GTP binding to the Arf GAP domain. In vivo, the tubular structures induced by ASAP1 mutants contained epidermal growth factor receptor (EGFR) and Rab11, and ASAP1 colocalized in tubular structures with EGFR during recycling of receptor. Expression of ASAP1 accelerated EGFR trafficking and slowed cell spreading. An ASAP1 mutant lacking the BAR domain had no effect. CONCLUSIONS: The N-terminal BAR domain of ASAP1 mediates membrane bending and is necessary for ASAP1 function. The Arf dependence of the bending activity is consistent with ASAP1 functioning as an Arf effector.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/fisiología , Membrana Celular/ultraestructura , Receptores ErbB/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/fisiología , Factores de Ribosilacion-ADP/fisiología , Proteínas Adaptadoras Transductoras de Señales/análisis , Secuencia de Aminoácidos , Animales , Proteínas Activadoras de GTPasa/análisis , Ratones , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia
14.
Cell Signal ; 20(11): 1968-77, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18675341

RESUMEN

ASAP family Arf GAPs induce the hydrolysis of GTP bound to the Ras superfamily protein Arf1, regulate cell adhesion and migration and have been implicated in carcinogenesis. The ASAP proteins have a core catalytic domain of PH, Arf GAP and Ank repeat domains. The PH domain is necessary for both biological and catalytic functions of ASAP1 and has been proposed to be integrally folded with the Arf GAP domain. Protection studies and analytical ultracentrifugation studies previously reported indicated that the domains are, at least partly, folded together. Here, using NMR spectroscopy and biochemical analysis, we have further tested this hypothesis and characterized the interdomain interaction. A comparison of NMR spectra of three recombinant proteins comprised of either the isolated PH domain of ASAP1, the Arf GAP and ankyrin repeat domain or all three domains indicated that the PH domain did interact with the Arf GAP and Ank repeat domains; however, we found a significant amount of dynamic independence between the PH and Arf GAP domains, consistent with the interactions being transient. In contrast, the Arf GAP and Ank repeat domains form a relatively rigid structure. The PH-Arf GAP domain interaction partially occluded the phosphoinositide binding site in the soluble protein, but binding studies indicated the PIP2 binding site was accessible in ASAP1 bound to a lipid bilayer surface. Phosphoinositide binding altered the conformation of the PH domain, but had little effect on the structure of the Arf GAP domain. Mutations in a loop of the PH domain that contacts the Arf GAP domain affected PIP2 binding and the K(m) and k(cat) for converting Arf1 GTP to Arf1 GDP. Based on these results, we generated a homology model of a composite PH/Arf GAP/Ank repeat domain structure. We propose that the PH domain contributes to Arf GAP activity by either binding to or positioning Arf1 GTP that is simultaneously bound to the Arf GAP domain.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Sitios de Unión , Catálisis , Fosfatos de Inositol/metabolismo , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolípidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
15.
iScience ; 22: 166-180, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31785555

RESUMEN

ASAP1 is a multi-domain ArfGAP that controls cell migration, spreading, and focal adhesion dynamics. Although its GAP activity contributes to remodeling of the actin cytoskeleton, it does not fully explain all cellular functions of ASAP1. Here we find that ASAP1 regulates actin filament assembly directly through its N-BAR domain and controls stress fiber maintenance. ASAP1 depletion caused defects in stress fiber organization. Conversely, overexpression of ASAP1 enhanced actin remodeling. The BAR-PH fragment was sufficient to affect actin. ASAP1 with the BAR domain replaced with the BAR domain of the related ACAP1 did not affect actin. The BAR-PH tandem of ASAP1 bound and bundled actin filaments directly, whereas the presence of the ArfGAP and the C-terminal linker/SH3 domain reduced binding and bundling of filaments by BAR-PH. Together these data provide evidence that ASAP1 may regulate the actin cytoskeleton through direct interaction of the BAR-PH domain with actin filaments.

16.
Small GTPases ; 10(3): 196-209, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-28430047

RESUMEN

Arf GTPase-activating proteins (Arf GAPs) were first identified as regulators of the small GTP-binding proteins ADP-ribosylation factors (Arfs). The Arf GAPs are a large family of proteins in metazoans, outnumbering the Arfs that they regulate. The members of the Arf GAP family have complex domain structures and some have been implicated in particular cellular functions, such as cell migration, or with particular pathologies, such as tumor invasion and metastasis. The specific effects of Arfs sometimes depend on the Arf GAP involved in their regulation. These observations have led to speculation that the Arf GAPs themselves may affect cellular activities in capacities beyond the regulation of Arfs. Recently, 2 Arf GAPs, ASAP1 and AGAP1, have been found to bind directly to and influence the activity of myosins and kinesins, motor proteins associated with filamentous actin and microtubules, respectively. The Arf GAP-motor protein interaction is critical for cellular behaviors involving the actin cytoskeleton and microtubules, such as cell migration and other cell movements. Arfs, then, may function with molecular motors through Arf GAPs to regulate microtubule and actin remodeling.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Cinesinas/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Activadoras de GTPasa/genética , Humanos , Cinesinas/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Miosinas/genética , Dominios Proteicos
17.
Curr Biol ; 15(23): 2164-9, 2005 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-16332543

RESUMEN

Arf1 is a GTP binding protein that functions at a number of cellular sites to control membrane traffic and actin remodeling. Arf1 is regulated by site-specific GTPase-activating proteins (GAPs). The combined results of crystallographic and biochemical studies have led to the proposal that Arf1 GAPs differ in the specific interface formed with Arf1. To test this hypothesis, we have used mutagenesis to examine the interaction of three Arf GAPs (ASAP1, AGAP1, and ArfGAP1) with switch 1, switch 2, and alpha helix3 of Arf1. The GAPs were similar in being affected by mutations in switch 1 and 2. However, effects of a mutation within alpha helix3 and specific mutations within switch 1 and 2 differed among the GAPs. The largest differences were observed with a change of isoleucine 46 to aspartate ([I46D]Arf1), which reduced ASAP1-induced catalysis by approximately 10,000-fold but had a 3-fold effect on AGAP1. The reduction was due to an isolated effect on the catalytic rate, k(cat). In vivo [I46D]Arf1 had no detectable effect on the Golgi apparatus but, instead, functioned as a constitutively active mutant in the cell periphery, affecting the localization of ASAP1 and paxillin. Based on our results, we conclude that the contribution of specific residues within switch 1 of Arf to binding and achieving a transition state toward GTP hydrolysis differs among Arf GAPs.


Asunto(s)
Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Modelos Moleculares , Animales , Catálisis , Análisis Mutacional de ADN , Técnica del Anticuerpo Fluorescente , Aparato de Golgi/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Ratones , Mutación/genética , Células 3T3 NIH
18.
Biochem J ; 402(3): 439-47, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17112341

RESUMEN

Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are enzymes that catalyse the hydrolysis of GTP bound to the small GTP-binding protein Arf. They have also been proposed to function as Arf effectors and oncogenes. We have set out to characterize the kinetics of the GAP-induced GTP hydrolysis using a truncated form of ASAP1 [Arf GAP with SH3 (Src homology 3) domain, ankyrin repeats and PH (pleckstrin homology) domains 1] as a model. We found that ASAP1 used Arf1-GTP as a substrate with a k(cat) of 57+/-5 s(-1) and a K(m) of 2.2+/-0.5 microM determined by steady-state kinetics and a kcat of 56+/-7 s(-1) determined by single-turnover kinetics. Tetrafluoroaluminate (AlF4-), which stabilizes complexes of other Ras family members with their cognate GAPs, also stabilized a complex of Arf1-GDP with ASAP1. As anticipated, mutation of Arg-497 to a lysine residue affected kcat to a much greater extent than K(m). Changing Trp-479, Iso-490, Arg-505, Leu-511 or Asp-512 was predicted, based on previous studies, to affect affinity for Arf1-GTP. Instead, these mutations primarily affected the k(cat). Mutants that lacked activity in vitro similarly lacked activity in an in vivo assay of ASAP1 function, the inhibition of dorsal ruffle formation. Our results support the conclusion that the Arf GAP ASAP1 functions in binary complex with Arf1-GTP to induce a transition state towards GTP hydrolysis. The results have led us to speculate that Arf1-GTP-ASAP1 undergoes a significant conformational change when transitioning from the ground to catalytically active state. The ramifications for the putative effector function of ASAP1 are discussed.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Guanosina Trifosfato/metabolismo , Factor 1 de Ribosilacion-ADP/química , Factor 1 de Ribosilacion-ADP/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Catálisis , Humanos , Hidrólisis , Cinética , Metabolismo de los Lípidos , Ratones , Modelos Moleculares , Mutación/genética , Células 3T3 NIH , Unión Proteica , Estructura Terciaria de Proteína , Homología Estructural de Proteína
20.
Oncogene ; 22(52): 8460-71, 2003 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-14627987

RESUMEN

The transcription factor E2F-1 is implicated in the activation of S-phase genes as well as induction of apoptosis, and is regulated by interactions with Rb and by cell cycle-dependent alterations in E2F-1 abundance. We earlier demonstrated a pivotal role for poly(ADP-ribose) polymerase-1 (PARP-1) in the regulation of E2F-1 expression and promoter activity during S-phase re-entry when quiescent cells re-enter the cell cycle. We now investigate the putative mechanism(s) by which PARP-1 may upregulate E2F-1 promoter activity during S-phase re-entry. DNase-1 footprint assays with purified PARP-1 showed that PARP-1 did not directly bind the E2F-1 promoter in a sequence-specific manner. In contrast to p53, a positive acceptor in poly(ADP-ribosyl)ation reactions, E2F-1 was not poly(ADP-ribosyl)ated by wild-type PARP-1 in vitro, indicating that PARP-1 does not exert a dual effect on E2F-1 transcriptional activation. Protein-binding reactions and coimmunoprecipitation experiments with purified PARP-1 and E2F-1, however, revealed that PARP-1 binds to E2F-1 in vitro. More significantly, physical association of PARP-1 and E2F-1 in vivo also occurred in wild-type fibroblasts 5 h after re-entry into S phase, coincident with the increase in E2F-1 promoter activity and expression of E2F-1-responsive S-phase genes cyclin A and c-Myc. Mapping of the interaction domains revealed that full-length PARP-1 as well as PARP-1 mutants lacking either the catalytic active site or the DNA-binding domain equally bind E2F-1, whereas a PARP-1 mutant lacking the automodification domain does not, suggesting that the protein interaction site is located in this central domain. Finally, gel shift analysis with end-blocked E2F-1 promoter sequence probes verified that the binding of PARP-1 to E2F-1 enhances binding to the E2F-1 promoter, indicating that PARP-1 acts as a positive cofactor of E2F-1-mediated transcription.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Poli(ADP-Ribosa) Polimerasas/metabolismo , Fase S/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Ciclina A/metabolismo , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Genes myc/fisiología , Humanos , Pruebas de Precipitina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA