Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Respir Cell Mol Biol ; 70(5): 400-413, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301267

RESUMEN

Newborns with intrauterine growth restriction (IUGR) have a higher likelihood of developing pulmonary arterial hypertension (PAH) in adulthood. Although there is increasing evidence suggesting that pericytes play a role in regulating myofibroblast transdifferentiation and angiogenesis in malignant and cardiovascular diseases, their involvement in the pathogenesis of IUGR-related pulmonary hypertension and the underlying mechanisms remain incompletely understood. To address this issue, a study was conducted using a Sprague-Dawley rat model of IUGR-related pulmonary hypertension. Our investigation revealed increased proliferation and migration of pulmonary microvascular pericytes in IUGR-related pulmonary hypertension, accompanied by weakened endothelial-pericyte interactions. Through whole-transcriptome sequencing, Ddx5 (DEAD-box protein 5) was identified as one of the hub genes in pericytes. DDX5, a member of the RNA helicase family, plays a role in the regulation of ATP-dependent RNA helicase activities and cellular function. MicroRNAs have been implicated in the pathogenesis of PAH, and microRNA-205 (miR-205) regulates cell proliferation, migration, and angiogenesis. The results of dual-luciferase reporter assays confirmed the specific binding of miR-205 to Ddx5. Mechanistically, miR-205 negatively regulates Ddx5, leading to the degradation of ß-catenin by inhibiting the phosphorylation of Gsk3ß at serine 9. In vitro experiments showed the addition of miR-205 effectively ameliorated pericyte dysfunction. Furthermore, in vivo experiments demonstrated that miR-205 agomir could ameliorate pulmonary hypertension. Our findings indicated that the downregulation of miR-205 expression mediates pericyte dysfunction through the activation of Ddx5. Therefore, targeting the miR-205/Ddx5/p-Gsk3ß/ß-catenin axis could be a promising therapeutic approach for IUGR-related pulmonary hypertension.


Asunto(s)
Proliferación Celular , ARN Helicasas DEAD-box , Epigénesis Genética , Retardo del Crecimiento Fetal , Glucógeno Sintasa Quinasa 3 beta , Hipertensión Pulmonar , MicroARNs , Pericitos , Ratas Sprague-Dawley , Animales , Femenino , Humanos , Masculino , Ratas , beta Catenina/metabolismo , beta Catenina/genética , Movimiento Celular/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , MicroARNs/genética , MicroARNs/metabolismo , Pericitos/metabolismo , Pericitos/patología
2.
Neurol Sci ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704479

RESUMEN

BACKGROUND: Juvenile myoclonic epilepsy (JME) is characterized by altered patterns of brain functional connectivity (FC). However, the nature and extent of alterations in the spatiotemporal characteristics of dynamic FC in JME patients remain elusive. Dynamic networks effectively encapsulate temporal variations in brain imaging data, offering insights into brain network abnormalities and contributing to our understanding of the seizure mechanisms and origins. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) data were procured from 37 JME patients and 37 healthy counterparts. Forty-seven network nodes were identified by group-independent component analysis (ICA) to construct the dynamic network. Ultimately, patients' and controls' spatiotemporal characteristics, encompassing temporal clustering and variability, were contrasted at the whole-brain, large-scale network, and regional levels. RESULTS: Our findings reveal a marked reduction in temporal clustering and an elevation in temporal variability in JME patients at the whole-brain echelon. Perturbations were notably pronounced in the default mode network (DMN) and visual network (VN) at the large-scale level. Nodes exhibiting anomalous were predominantly situated within the DMN and VN. Additionally, there was a significant correlation between the severity of JME symptoms and the temporal clustering of the VN. CONCLUSIONS: Our findings suggest that excessive temporal changes in brain FC may affect the temporal structure of dynamic brain networks, leading to disturbances in brain function in patients with JME. The DMN and VN play an important role in the dynamics of brain networks in patients, and their abnormal spatiotemporal properties may underlie abnormal brain function in patients with JME in the early stages of the disease.

3.
BMC Public Health ; 24(1): 53, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166945

RESUMEN

BACKGROUND: Low-diversity diets and sedentary status are risk factors for depressive symptoms, while knowledge workers were ignored before. The purpose of this current study was to examine the relationship between dietary diversity, sedentary time spent outside of work, and depressive symptoms among knowledge workers. STUDY DESIGN AND METHODS: This was a multicenter and cross-sectional design that included 118,723 knowledge workers. Participants self-reported online between January 2018 and December 2020. Demographic information, the Dietary Diversity Scale, the Patient Health Questionnaire-9, dietary habits (which included eating three meals on time, midnight snacking, overeating, social engagement, coffee consumption, sugary drink consumption, smoking and alcohol use), sedentary time spent outside of work and physical activity were investigated. RESULTS: The relationships between demographic information, dietary habits and dietary diversity, and depressive symptoms were estimated. Compared with the first and second levels of dietary diversity, the third level of dietary diversity (OR: 0.91; 95% CI: 0.84-0.98) reduced the risk of depressive symptoms. Knowledge workers with different degrees of sedentary status (2-4 h (OR: 1.11; 95% CI: 1.07-1.14), 4-6 h (OR: 1.21; 95% CI: 1.17-1.26), and > 6 h (OR: 1.49; 95% CI: 1.43-1.56), presented a progressively higher risk of depressive symptoms. CONCLUSION: High amounts of sedentary time spent after work and low levels of dietary diversity are risk factors for depressive symptoms. In addition, an irregular diet and overeating are also major risk factors for knowledge workers.


Asunto(s)
Depresión , Conducta Sedentaria , Humanos , Depresión/epidemiología , Depresión/etiología , Estudios Transversales , Dieta , Hiperfagia
4.
Exp Ther Med ; 27(5): 183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38515647

RESUMEN

Intrauterine growth restriction (IUGR) with rapid postnatal catch-up growth is strongly associated with pulmonary vascular dysfunction in adulthood, whereas IUGR with delayed growth in early postnatal life results in long-term brain deficits. In the present study, it was hypothesized that IUGR with early moderate catch-up growth may alleviate pulmonary vascular remodeling in adulthood without affecting memory function. An IUGR model was established by restricting maternal nutrition during pregnancy. Different growth patterns were achieved by adjusting the litter size in each group during lactation. Rats meeting the weight requirement at weaning were selected for subsequent studies at three time points (3, 9 and 13 weeks). Cognitive function was evaluated using a Y-maze. Invasive hemodynamic measurements were conducted to measure the mean pulmonary arterial pressure (mPAP). In addition, primary pulmonary artery smooth muscle cells (PASMCs) and pulmonary vascular endothelial cells (PVECs) were cultured to investigate their role in the increase in mPAP following rapid catch-up growth. The results showed that memory function deficits in the rats in the delayed growth group were associated with reduced proliferation of neural stem cells in the subgranular zone of the hippocampus. Furthermore, moderate catch-up growth at the three time points improved memory function while maintaining a normal mPAP. In adult IUGR rats experiencing rapid catch-up growth, although memory function improved, elevated mPAP and medial thickening of pulmonary arterioles were observed. Additionally, PASMCs exhibited excessive proliferation, migration and anti-apoptotic activity in the rapid catch-up group, and PVECs also displayed excessive proliferation. These results suggested that moderate catch-up growth after IUGR is a better strategy for optimal cognition and cardiovascular health in adulthood compared with rapid catch-up growth or delayed growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA