Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Genomics ; 19(1): 630, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30139327

RESUMEN

BACKGROUND: During hair growth, cortical cells emerging from the proliferative follicle bulb rapidly undergo a differentiation program and synthesize large amounts of hair keratin proteins. In this process, HOXC13 is one critical regulatory factor, proved by the hair defects in HOXC13 mutant mice and HOXC13 mutant patients. However, inconsistent conclusions were drawn from previous researches regarding the regulation of HOXC13 on different keratins. Whether HOXC13 has extensive and unified regulatory role on these numerous keratins is unclear. RESULTS: In this study, firstly, RNA-seq was performed to reveal the molecular mechanism of cashmere cycle including anagen and telogen. Subsequently, combining the sequencing with qRT-PCR and immunofluorescent staining results, we found that HOXC13 showed similar expression pattern with a large proportion of keratins except for KRT1 and KRT2, which were higher in anagen compared with telogen. Then, the regulatory role of HOXC13 on different keratins was investigated using dual-luciferase reporter system and keratin promoter-GFP system by overexpressing HOXC13 in HEK 293 T cells and dermal papilla cells. Our results demonstrated that HOXC13 up-regulated the promoter activity of KRT84 and KRT38, while down-regulated the promoter activity of KRT1 and KRT2, which suggested HOXC13 had an ambivalent effect on the promoters of different KRTs. Furtherly, the regulation on HOXC13 itself was investigated. At transcriptional level, the binding sites of HOXC13 and LEF1 were found in the promoter of HOXC13. Then, through transfecting corresponding overexpression vector and dual-luciferase reporter system into dermal papilla cells, the negative-feedback regulation of HOXC13 itself and positive regulation of LEF1 on HOXC13 promoter were revealed. In addition, melatonin could significantly increase the promoter activity of HOXC13 under the concentration of 10 µM and 25 µM by adding exogenous melatonin into dermal papilla cells. At post-transcriptional level, we investigated whether chi-miR-200a could target HOXC13 through dual-luciferase reporter system. At epigenetic level, we investigated the methylation level of HOXC13 promoter at different stages including anagen, telogen and 60d of embryonic period. As a result, miR-200a and methylation were not regulatory factors of HOXC13. Interestingly, we found two SNPs (c.812A > G and c.929A > C) in the homeodomain of HOXC13 that could deprive the regulatory function of HOXC13 on keratins without changing its protein expression. CONCLUSION: HOXC13 had an inconsistent effect on the promoters of different keratins. Two SNPs (c.812A > G and c.929A > C) in the homeodomain of HOXC13 deprived its function on keratin regulation. Besides, the negative-feedback regulation by HOXC13 itself and positive regulation by LEF1 and melatonin on HOXC13 promoter were revealed. This study will enrich the function of HOXC13 on keratin regulation and contribute to understand the mechanism of hair follicle differentiation.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Queratinas/metabolismo , Animales , Cabras , Células HEK293 , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Queratinas/genética , Mutación , Regiones Promotoras Genéticas/genética , Dominios Proteicos , Lana/metabolismo
2.
Appl Microbiol Biotechnol ; 102(23): 10119-10126, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30209551

RESUMEN

The full length of interested genes can be usually cloned by assembling exons or RACE products through overlap PCR. However, the procedure requires multiple PCR steps, which are prone to random mutagenesis. Here, we present a novel SSA-based method for gene cloning and seamless site-directed mutagenesis. We firstly cloned the full-length coding sequence of Cashmere goat (Capra hircus) Hoxc13 gene by assembling exons amplified from genomic DNA. Secondly, we created a Hoxc13 loss-function mutant seamlessly and further illustrated that direct repeat length of 25 bp is enough to trigger the SSA repair in routine E. coli strains including DH5α, Trans1t1, JM109, and Top10. Moreover, we cloned another full-length mutant of Foxn1 gene from Cashmere goat cDNA using further shortened direct repeats of 19 bp. In summary, our study provided an alternative method to overcome the difficulties during overlap PCR in some particular cases for gene cloning.


Asunto(s)
Clonación Molecular , Reparación del ADN , ADN Complementario , Exones , Mutagénesis Sitio-Dirigida/métodos , Animales , Roturas del ADN de Doble Cadena , ADN Complementario/genética , Genoma , Cabras/genética , Proteínas de Homeodominio/genética , Mutación , Sistemas de Lectura Abierta
3.
BMC Genomics ; 18(1): 767, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29020916

RESUMEN

BACKGROUND: Cashmere growth is a seasonal and cyclic phenomenon under the control of photoperiod and multiple stimulatory and inhibitory signals. Beyond relevant coding genes, microRNA (miRNA) and long non coding RNA (lncRNA) play an indispensable role in hair follicle (HF) development and skin homeostasis. Furthermore, the influence of lncRNA upon miRNA function is also rapidly emerging. However, little is known about miRNAs, lncRNAs and their functions as well as their interactions on cashmere development and cycling. RESULT: Here, based on lncRNA and miRNA high-throughput sequencing and bioinformatics analysis, we have identified 1108 lncRNAs and 541 miRNAs in cashmere goat skin during anagen and telogen. Compared with telogen, 1388 coding genes, 41 lncRNAs and 15 miRNAs were upregulated, while 1104 coding genes, 157 lncRNAs and 8 miRNAs were downregulated in anagen (adjusted P-value ≤0.05 and relative fold-change ≥2). Subsequently, we investigated the impact of lncRNAs on their target genes in cis and trans, indicating that these lncRNAs are functionally conserved during HF development and cycling. Furthermore, miRNA-mRNA and miRNA-lncRNA interaction were identified through the bioinformatics algorithm miRanda, then the ceRNA networks, miR-221-5p-lnc_000679-WNT3, miR-34a-lnc_000181-GATA3 and miR-214-3p-lnc_000344-SMAD3, were constructed under defined rules, to illustrate their roles in cashmere goat HF biology. CONCLUSION: The present study provides a resource for lncRNA, miRNA and mRNA studies in cashmere cycling and development. We also demonstrate potential ceRNA regulatory networks in cashmere goat HF cycling for the first time. It expands our knowledge about lncRNA and miRNA biology as well as contributes to the annotation of the goat genome.


Asunto(s)
Cabras/crecimiento & desarrollo , Cabras/genética , Folículo Piloso/crecimiento & desarrollo , MicroARNs/genética , ARN Largo no Codificante/genética , Animales , Genómica , Anotación de Secuencia Molecular
4.
Chem Sci ; 15(29): 11166-11187, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39055001

RESUMEN

Carbon dioxide (CO2) electrolysis to carbon monoxide (CO) is a very promising strategy for economically converting CO2, with high-temperature solid oxide electrolysis cells (SOECs) being regarded as the most suitable technology due to their high electrode reaction kinetics and nearly 100% faradaic efficiency, while their practical application is highly dependent on the performance of their fuel electrode (cathode), which significantly determines the cell activity, selectivity, and durability. In this review, we provide a timely overview of the recent progress in the understanding and development of fuel electrodes, predominantly based on perovskite oxides, for CO2 electrochemical reduction to CO (CO2RR) in SOECs. Initially, the current understanding of the reaction mechanisms over the perovskite electrocatalyst for CO synthesis from CO2 electrolysis in SOECs is provided. Subsequently, the recent experimental advances in fuel electrodes are summarized, with importance placed on perovskite oxides and their modification, including bulk doping with multiple elements to introduce high entropy effects, various methods for realizing surface nanoparticles or even single atom catalyst modification, and nanocompositing. Additionally, the recent progress in numerical modeling-assisted fast screening of perovskite electrocatalysts for high-temperature CO2RR is summarized, and the advanced characterization techniques for an in-depth understanding of the related fundamentals for the CO2RR over perovskite oxides are also reviewed. The recent pro-industrial application trials of the CO2RR in SOECs are also briefly discussed. Finally, the future prospects and challenges of SOEC cathodes for the CO2RR are suggested.

5.
Adv Sci (Weinh) ; 11(23): e2310295, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626370

RESUMEN

Neuropathic pain can occur during the prediabetic stage, even in the absence of hyperglycemia. The presence of prediabetic neuropathic pain (PDNP) poses challenges to the management of individuals with prediabetes. However, the mechanisms underlying this pain remain unclear. This study aims to investigate the underlying mechanism and identify potential therapeutic targets of PDNP. A prediabetic animal model induced by a high-energy diet exhibits both mechanical allodynia and thermal hyperalgesia. Furthermore, hyperexcitability and decreased potassium currents are observed in the dorsal root ganglion (DRG) neurons of these rats. TREK1 and TREK2 channels, which belong to the two-pore-domain K+ channel (K2P) family and play an important role in controlling cellular excitability, are downregulated in DRG neurons. Moreover, this alteration is modulated by Sortilin, a molecular partner that modulates the expression of TREK1. The overexpression of Sortilin negatively affects the expression of TREK1 and TREK2, leading to increased neuronal excitability in the DRG and enhanced peripheral pain sensitivity in rats. Moreover, the downregulation of Sortilin or activation of TREK1 and TREK2 channels by genetic or pharmacological approaches can alleviate PDNP. Therefore, targeting the Sortilin-mediated TREK1/2 pathway may provide a therapeutic approach for ameliorating PDNP.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Modelos Animales de Enfermedad , Neuralgia , Canales de Potasio de Dominio Poro en Tándem , Ratas Sprague-Dawley , Células Receptoras Sensoriales , Animales , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Ratas , Neuralgia/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Masculino , Células Receptoras Sensoriales/metabolismo , Estado Prediabético/metabolismo , Ganglios Espinales/metabolismo
6.
ACS Appl Mater Interfaces ; 15(46): 53714-53724, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37935591

RESUMEN

ZSM-5 zeolite is usually used in gas sensors as an auxiliary material to improve the gas-sensitive properties of other semiconductor materials, such as its molecular sieve properties and surface adsorption properties. Here, the gas-sensitive mechanism analysis of SnO2/zeolite gas sensors is studied for the first time based on the perspective of zeolite as a band gap-tunable semiconductor that was reported recently. The gas-sensing mechanism of the zeolite/semiconductor has been modeled based on the surface charge theory, and the work function of the ZSM-5 zeolite has been revealed for the first time. A heterostructure of Ag and ZSM-5 was designed and compounded to tune the band gap of the ZSM-5 zeolite by the ammonia pool effect method. The band gap width of the zeolite decreases from 4.51 to 3.61 eV. A series of characterization techniques were used to analyze the distribution and morphology of silver nanoparticles in zeolites and the variation of the ZSM-5 band gap. Then, SnO2/Ag@ZSM-5 sensors were fabricated, and the gas-sensing performances were measured. The gas-sensing results show that the SnO2/Ag@ZSM-5 sensor has an improved response to formaldehyde in particular compared to the SnO2 sensor. The response value of the SnO2/Ag@ZSM-5 sensor to 70 ppm formaldehyde reached 29.4, which is a 528% improvement compared to the SnO2 sensor. Additionally, the selectivity was greatly enhanced. This study provides a strategy for designing and developing higher-performance gas sensors.

7.
Foods ; 11(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35681368

RESUMEN

Water is an important raw material in the food production process. Maintaining the quality and safety of water is very important in the food field. In this study, a simple novel fluorescent nanocellulose hydrogel (FNH) was prepared for the detection and removal of heavy metals (Fe3+ and Pb2+) in aqueous solutions based on carbon dots (CDs). The CDs were grafted onto the carboxylated nanocellulose (CNC) by the EDC/NHS coupling method, and then the nanocellulose (NC), CNC, and FNH were characterized by FTIR analysis. The effect of adsorption environment on FNH adsorption capacity was also investigated. After carboxylation and grafting of CDs, the adsorption capacity of nanocellulose to Fe3+ and Pb2+ was greatly improved, and it was also allowed to make fast visual responses to Fe3+ as an optical sensor to determine the concentration of Fe3+ through the visual signal. Static adsorption experiment demonstrated that the removal rate of Fe3+ and Pb2+ by FNH exceeded 69.4% and 98.2%, and the adsorption capacity amount reached 98.3 mg/g and 442.0 mg/g. At the same time, due to the fluorescence quenching effect of Fe3+, FNH could also be used for the detection of Fe3+ concentration in aqueous solution, and the limit of detection (LOD) could reach 62.5 mg/L.

8.
J Agric Food Chem ; 70(37): 11603-11612, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36083862

RESUMEN

Cellulose nanocrystal (CNC) is a sustainable biomaterial that has been used in many aspects of the food industry, but its effect on fat digestion and absorption is still underexplored. In this study, three CNCs were prepared from buckwheat bran. Their physicochemical properties were characterized, based on which the acetic acid-hydrolyzed CNC (ACCNC) with high absorption capacity was selected for the cytotoxicity evaluation and as a possible inhibitor for fat digestion and absorption in vitro and in vivo. ACCNC was proved to be nontoxic in the MTT assay and animal feeding tests. Especially, with the addition of ACCNC, the hydrolysis of fat was significantly reduced during the simulated digestion in vitro. In vivo testing also confirmed that ACCNC intake significantly reduced the elevated triglyceride, body weight, and fat accumulation levels. This study highlights the potential role of ACCNC prepared from buckwheat bran as an inhibitor for fat digestion and absorption.


Asunto(s)
Fagopyrum , Animales , Materiales Biocompatibles , Celulosa/química , Digestión , Fagopyrum/química , Triglicéridos
9.
Nutrients ; 14(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35745260

RESUMEN

There is a consensus that ferulic acid (FA), the most prominent phenolic acid in whole grains, displays a protective effect in non-alcoholic fatty liver disease (NAFLD), though its underlying mechanism not fully elucidated. This study aimed to investigate the protective effect of FA on high-fat diet (HFD)-induced NAFLD in mice and its potential mechanism. C57BL/6 mice were divided into the control diet (CON) group, the HFD group, and the treatment (HFD+FA) group, fed with an HFD and FA (100 mg/kg/day) by oral gavage for 12 weeks. Hematoxylin and eosin (H&E) staining and Oil Red O staining were used to evaluate liver tissue pathological changes and lipid accumulation respectively. It was demonstrated that FA supplementation prevented HFD-induced NAFLD, which was evidenced by the decreased accumulation of lipid and hepatic steatosis in the HFD+FA group. Specifically, FA supplementation decreased hepatic triacylglycerol (TG) content by 33.5% (p < 0.01). Metabolic cage studies reveal that FA-treated mice have elevated energy expenditure by 11.5% during dark phases. Mechanistically, FA treatment increases the expression of rate-limiting enzymes of fatty acid oxidation and ketone body biosynthesis CPT1A, ACOX1 and HMGCS2, which are the peroxisome proliferator-activated receptors α (PPARα) targets in liver. In conclusion, FA could effectively prevent HFD-induced NAFLD possibly by activating PPARα to increase energy expenditure and decrease the accumulation of triacylglycerol in the liver.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ácidos Cumáricos , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Ácidos Grasos/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , PPAR alfa/metabolismo , Triglicéridos/metabolismo
10.
Adv Mater ; 34(10): e2106379, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34962667

RESUMEN

A high-performance cathode of a protonic ceramic fuel cell (PCFC) should possess excellent oxygen reduction reactivity, high proton/oxygen-ion/electron conductivity, and sufficient operational stability, thus requiring a delicate tuning of both the bulk and surface properties of the electrode material. Although surface modification of perovskites with nanoparticles from reducing-atmosphere exsolution has been demonstrated effective at improving the electrochemical anodic oxidation, such nanoparticles would easily re-incorporate into the perovskite lattice causing a big challenge for their application as a cathode. Here, a durable perovskite-based nanocomposite cathode for PCFCs is reported, which is facilely prepared via the exsolution of nanoparticles in an oxidizing atmosphere. Through composition and cation nonstoichiometry manipulation, a precursor with the nominal composition of Ba0.95 (Co0.4 Fe0.4 Zr0.1 Y0.1 )0.95 Ni0.05 O3-δ (BCFZYN-095) is designed, synthesized, and investigated, which, upon calcination, gives rise to the formation of a perovskite-based nanocomposite comprising a major perovskite phase and a minor NiO phase enriched on the perovskite surface. The major perovskite phase enabled by the proper cation nonstoichiometry manipulation promotes bulk proton conduction while the NiO nanoparticles facilitate the oxygen surface exchange process, leading to a superior cathodic performance with a maximum peak power density of 1040 mW cm-2 at 650 °C and excellent operational stability of 400 h at 550 °C.

11.
Front Nutr ; 9: 976638, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211528

RESUMEN

Ferulic acid (FA), a natural phenolic phytochemical abundantly present in whole grains, displays promising therapeutic effects on hypercholesterolemia while its underlying mechanism not fully elucidated. This study aimed to investigate the cholesterol-lowering effect of FA in high-fat diet (HFD)-fed mice and its potential molecular mechanism. FA supplementation alleviated HFD-induced hypercholesterolemia (-13.2%, p < 0.05), along with increased excretion of bile acids (BAs) in feces (37.0%, p < 0.05). Mechanism studies showed that FA activated the expression of cholesterol 7α hydroxylase (CYP7A1), a rate-limiting enzyme in BA biosynthesis in the liver, which increased the BAs biosynthesis from cholesterol. Surprisingly, increased excretion of BAs in feces is a consequence, not a cause, of CYP7A1 activation. Furthermore, enterohepatic farnesoid X receptor (FXR) signaling is not involved in the activation of hepatic CYP7A1 by FA. In conclusion, FA activates CYP7A1 through non-FXR signaling, which on the one hand effectively prevents hypercholesterolemia, and on the other hand leads to secondary BAs elevation in plasma. The latter may be the key to the anti-obesity and hypoglycemic effects of FA.

12.
Carbohydr Polym ; 224: 115173, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31472861

RESUMEN

Bacterial cellulose (BC) features a nanofibrillar network structure that can provide a good template for quantum dots (QDs), to overcome the fluorescence quenching-effect of QDs in polymer composites. Here, we fabricated novel fluorescent aerogels with tunable emission by covalently binding environmentally-friendly ZnS(CuInS2)/ZnS core-shell quantum dots along the nanofibrillar BC. A new ligand of 3-(mercaptopropyl)trimethoxysilane allows QDs to transfer from toluene to alcohol solvent and stably bind to the BC. After supercritical CO2 drying, the resulting BC-QDs aerogels maintain the porous nanofibrillar morphology of BC with ultra-light-weight, the QDs are well-distributed along the BC fiber surfaces without aggregation. The emission wavelength can be tuned in a wide range from 470 to 750 nm by simply adjusting the QDs core component or shell layers. This work provides a new approach for fabricating QDs-polymer hydrogels and aerogels with well distributed QDs via chemical binding that potential as smart sensor, catalysis, and 3D display applications.


Asunto(s)
Aleaciones/química , Celulosa/química , Colorantes Fluorescentes/química , Gluconacetobacter xylinus/química , Nanofibras/química , Puntos Cuánticos/química , Sulfuros/química , Compuestos de Zinc/química , Geles , Tecnología Química Verde , Porosidad , Espectrometría de Fluorescencia , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA