Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemosphere ; 308(Pt 1): 136172, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36037949

RESUMEN

Coupled solid carbon source biofilm carriers (CCBs) was usually utilized to enhance the treatment efficiency of low carbon/nitrogen (C/N) wastewater. However, current CCBs have low carbon release capacity because of its small inner mass transfer coefficient. Therefore, this study innovatively applied pore-forming methods to modify CCBs. After orthogonal selections, two porous CCBs, which were respectively prepared through circulating freezing pore-forming method (CCB2) and ammonium bicarbonate pore-forming method (CCB3), were proposed and further applied in sequencing batch moving bed biofilm reactors (SBMBBRs). The results indicated that circulating freezing pore-forming method could improve the mechanical strength and carbon source release rate of CCBs. In addition, CCB2 could significantly enhance the total nitrogen (TN) removal efficiency of SBMBBRs, when compared with the non-porous CCBs (i.e., CCB1). Further biofilm and simultaneous nitrification and denitrification (SND) rate calculation attributed this enhancement to the higher biofilm amount (i.e., 0.06 g g-1 CCB) and the higher SND rate (i.e., 33.60%). Microbial community analysis reiterated these observations that CCB2 and CCB3 could accumulate Proteobacteria, Actinobacteriota and Nitrospirota, and also stimulate nitrification and denitrification associated pathways. More importantly, the cost calculation indicated CCB2 cost only 47.37% of CCB1 and 31.34% of CCB3, showing highly economic applicability. Overall, our results collectively proved that CCBs manufactured by circulating freezing pore-forming method could provide more carbon releasing points and microorganisms attaching positions, exhibiting effectively nitrogen removal when treating low C/N wastewater.


Asunto(s)
Desnitrificación , Aguas Residuales , Bacterias/metabolismo , Biopelículas , Reactores Biológicos/microbiología , Carbono/metabolismo , Nitrificación , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos
2.
Chemosphere ; 288(Pt 2): 132567, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34653477

RESUMEN

Low carbon/nitrogen ratio (C/N) wastewater is widespread and difficult to treat. To find a resolution to this issue, this study systematically evaluated the constituents of composite solid carbon (i.e., skeletons, carbon sources and crosslinking agents), and proposed a new multi-carbon source composite S1 (MCSC.S1). The effects on nitrogen removal were further determined through a sequencing batch moving bed biofilm reactor (SBMBBR). The results showed that MCSC.S1, which was composed of polyvinyl alcohol-sodium alginate (PVA-SA), corncob + poly (R-ß-hydroxybutyrate) (CC + PHB), and H3BO3-4% CaCl2+Na2SO4 had high stability and absorption. With MCSC.S1, total nitrification removal was enhanced by more than 48.56% through releasing carbon and absorbing the attached denitrifying bacteria. In addition, it was found that MCSC.S1 can simulate the simultaneous nitrification and denitrification (SND) process and contribute to 29.85% of the total nitrogen removal. 16S gene-based analysis attributed this supplementary nitrogen removal to the enrichment of nitrification (i.e., Proteobacteria, Actinobacteria and Chloroflexi), denitrification of associated bacteria (i.e., Nitrospirota) in MCSC.S1 added reactor, and the increase in nitrogen recycling associated genes. These findings collectively demonstrate that the new MCSC.S1 could effectively enhance nitrogen removal efficiency in low C/N ratio wastewater.


Asunto(s)
Nitrificación , Aguas Residuales , Carbono , Desnitrificación , Nitrógeno
3.
Chemosphere ; 287(Pt 2): 132149, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34496337

RESUMEN

Electrotrophic denitrification is a promising novel nitrogen removal technique. In this study, the performance and the mechanism of electrotrophic denitrification coupled with sulfate-sulfide cycle were investigated under different anodic influent COD/SO42- ratios. The results showed that electrotrophic denitrification contributed to more than 22% total nitrogen removal in cathode chamber. Higher COD/SO42- ratios would deteriorate the sulfate reduction but enhance methane production. Further mass balance indicated that the electron flow utilized by methanogenic archaea (MA) increased while that utilized by sulfate-reducing bacteria (SRB) decreased as the COD/SO42- ratio increased from 0.44 to 1.11. However, higher COD/SO42- ratios would produce more electrons to strengthen electrotrophic denitrification. Microbial community analysis showed that the biocathode was predominantly covered by Thiobacillus that encoded with narG gene. These findings collectively suggest that electrotrophic denitrification could be a sustainable approach to simultaneously remove COD and nitrogen under suitable COD/SO42- ratio based on sulfur cycle in wastewater.


Asunto(s)
Reactores Biológicos , Desnitrificación , Nitrógeno , Sulfatos , Azufre , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA