Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2031): 20240966, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39317319

RESUMEN

Biogeographical reconstructions of the Indo-Australian Archipelago (IAA) have suggested a recent spread across the Sunda and Sahul shelves of lineages with diverse origins, which appears to be congruent with a geological history of recent tectonic uplift in the region. However, this scenario is challenged by new geological evidence suggesting that the Sunda shelf was never submerged prior to the Pliocene, casting doubt on the interpretation of recent uplift and the correspondence of evidence from biogeography and geology. A mismatch between geological and biogeographical data may occur if analyses ignore the dynamics of extinct lineages, because this may add uncertainty to the timing and origin of clades in biogeographical reconstructions. We revisit the historical biogeography of multiple IAA taxa and explicitly allow for the possibility of lineage extinction. In contrast to models assuming zero extinction, we find that all of these clades, including plants, invertebrates and vertebrates, have a common and widespread geographic origin, and each has spread and colonized the region much earlier than previously thought. The results for the eight clades re-examined in this article suggest that they diversified and spread during the early Eocene, which helps to unify the geological and biological histories of IAA.


Asunto(s)
Extinción Biológica , Animales , Australia , Vertebrados , Invertebrados , Filogeografía , Fósiles , Evolución Biológica , Plantas
2.
Mol Phylogenet Evol ; : 108212, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39384122

RESUMEN

The northern North American Cordillera is a globally significant center of endemism. In western North America, imperiled arid steppe habitats support a number of unique species, including several endemic lichens. However, processes driving diversification and endemism in this region remain unclear. In this study, we investigate diversity and phylogeography of the threatened wanderlust lichens (mycobiont = Rhizoplaca species) which occur unattached on calcareous soils in steppe habitats in western North America. Wanderlust lichens comprise three species of lichen-forming fungi (LFF) - Rhizoplaca arbuscula, R. haydenii, and R. idahoensis (endangered, IUCN Red List) - which occur in fragmented populations in Idaho and Wyoming, with more limited populations in southeastern Montana and northern Utah. These lichens reproduce almost exclusively via large, asexual vegetative propagules. Here, our aims were to (i) assess the evolutionary origin of this group and identify phylogeographic structure, (ii) infer ancestral geographic distributions for lineages within this clade, and (iii) use species distribution modeling to better understand the distribution of contemporary populations. Using a genome-skimming approach, we generated a 19.1 Mb alignment, spanning ca. half of the complete LFF genome, from specimens collected throughout the entire range of wanderlust lichens. Based on this phylogeny we investigated phylogeographic patterns using RASP. Finally, we used MaxEnt to estimate species distribution models for R. arbuscula and R. haydenii. We inferred a highly structured topology, with clades corresponding to distinct geographic regions and morphologies represented throughout the group's distribution. We found that R. robusta, a sexually reproducing taxon, is clearly nested within this asexual lineage. Phylogeographic analyses suggest that both dispersal and vicariance played a significant role throughout the evolutionary history of the vagrant Rhizoplaca clade, with most of the dispersal events originating from the Salmon Basin in eastern Idaho - the center of diversity for this group. Despite the fact that wanderlust lichens are dispersal limited due to large, unspecialized vegetative propagules, we inferred multiple dispersal events crossing the Continental Divide. Comparing herbarium records with SDMs suggests that wanderlust lichens don't fully occupy the areas of highest distribution probability. In fact, documented records often occur in areas predicted to be only marginally suitable. These data suggest a potential mismatch between contemporary habitats outside of the center of diversity in eastern Idaho with the most suitable habitat, adding to the vulnerability of this imperiled complex of endemic lichens.

3.
Syst Biol ; 72(1): 106-119, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36645380

RESUMEN

Understanding the origins of diversity and the factors that drive some clades to be more diverse than others are important issues in evolutionary biology. Sophisticated SSE (state-dependent speciation and extinction) models provide insights into the association between diversification rates and the evolution of a trait. The empirical data used in SSE models and other methods is normally imperfect, yet little is known about how this can affect these models. Here, we evaluate the impact of common phylogenetic issues on inferences drawn from SSE models. Using simulated phylogenetic trees and trait information, we fitted SSE models to determine the effects of sampling fraction (phylogenetic tree completeness) and sampling fraction mis-specification on model selection and parameter estimation (speciation, extinction, and transition rates) under two sampling regimes (random and taxonomically biased). As expected, we found that both model selection and parameter estimate accuracies are reduced at lower sampling fractions (i.e., low tree completeness). Furthermore, when sampling of the tree is imbalanced across sub-clades and tree completeness is ≤ 60%, rates of false positives increase and parameter estimates are less accurate, compared to when sampling is random. Thus, when applying SSE methods to empirical datasets, there are increased risks of false inferences of trait dependent diversification when some sub-clades are heavily under-sampled. Mis-specifying the sampling fraction severely affected the accuracy of parameter estimates: parameter values were over-estimated when the sampling fraction was specified as lower than its true value, and under-estimated when the sampling fraction was specified as higher than its true value. Our results suggest that it is better to cautiously under-estimate sampling efforts, as false positives increased when the sampling fraction was over-estimated. We encourage SSE studies where the sampling fraction can be reasonably estimated and provide recommended best practices for SSE modeling. [Trait dependent diversification; SSE models; phylogenetic tree completeness; sampling fraction.].


Asunto(s)
Especiación Genética , Filogenia , Fenotipo
4.
Bioscience ; 72(11): 1118-1130, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36325105

RESUMEN

Wallacea-the meeting point between the Asian and Australian fauna-is one of the world's largest centers of endemism. Twenty-three million years of complex geological history have given rise to a living laboratory for the study of evolution and biodiversity, highly vulnerable to anthropogenic pressures. In the present article, we review the historic and contemporary processes shaping Wallacea's biodiversity and explore ways to conserve its unique ecosystems. Although remoteness has spared many Wallacean islands from the severe overexploitation that characterizes many tropical regions, industrial-scale expansion of agriculture, mining, aquaculture and fisheries is damaging terrestrial and aquatic ecosystems, denuding endemics from communities, and threatening a long-term legacy of impoverished human populations. An impending biodiversity catastrophe demands collaborative actions to improve community-based management, minimize environmental impacts, monitor threatened species, and reduce wildlife trade. Securing a positive future for Wallacea's imperiled ecosystems requires a fundamental shift away from managing marine and terrestrial realms independently.

5.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38741934

RESUMEN

Antimicrobial resistance (AMR) in microorganisms is an ongoing threat to human health across the globe. To better characterize the AMR profiles of six strains of Staphylococcus aureus , we performed a secondary analysis that consisted of the following steps: 1) download fastq files from the Sequence Read Archive, 2) perform a de novo genome assembly from the sequencing reads, 3) annotate the assembled contigs, 4) predict the presence of antimicrobial resistance genes. We predicted the presence of 75 unique genes that conferred resistance against 22 unique antimicrobial compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA