Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Sleep Res ; : e14266, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972672

RESUMEN

Rapid eye movement sleep is a state characterized by concomitant occurrence of rapid eye movements, electroencephalographic activation and muscle atonia. In this review, we provide up to date knowledge on the neuronal network controlling its onset and maintenance. It is now accepted that muscle atonia during rapid eye movement sleep is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. These neurons directly project and excite glycinergic/γ-aminobutyric acid-ergic pre-motoneurons localized in the ventromedial medulla. The sublaterodorsal tegmental nucleus rapid eye movement-on neurons are inactivated during wakefulness and non-rapid eye movement by rapid eye movement-off γ-aminobutyric acid-ergic neurons localized in the ventrolateral periaqueductal grey and the adjacent dorsal deep mesencephalic reticular nucleus. Melanin-concentrating hormone and γ-aminobutyric acid-ergic rapid eye movement sleep-on neurons localized in the lateral hypothalamus would inhibit these rapid eye movement sleep-off neurons initiating the state. Finally, the activation of a few limbic cortical structures during rapid eye movement sleep by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would be involved in the function(s) of rapid eye movement sleep. In summary, rapid eye movement sleep is generated by a brainstem generator controlled by forebrain structures involved in autonomic control.

2.
J Sleep Res ; 31(4): e13633, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35596591

RESUMEN

We summarize here the progress in identifying the neuronal network as well as the function of paradoxical sleep and the gaps of knowledge that should be filled in priority. The core system generating paradoxical sleep localized in the brainstem is now well identified, and the next step is to clarify the role of the forebrain in particular that of the hypothalamus including the melanin-concentrating hormone neurons and of the basolateral amygdala. We discuss these two options, and also the discovery that cortical activation during paradoxical sleep is restricted to a few limbic cortices activated by the lateral supramammillary nucleus and the claustrum. Such activation nicely supports the findings recently obtained showing that neuronal reactivation occurs during paradoxical sleep in these structures, and induces both memory consolidation of important memory and forgetting of less relevant ones. The question that still remains to be answered is whether paradoxical sleep is playing more crucial roles in processing emotional and procedural than other types of memories. One attractive hypothesis is that paradoxical sleep is responsible for erasing negative emotional memories, and that this function is not properly functioning in depressed patients. On the other hand, the presence of a muscle atonia during paradoxical sleep is in favour of a role in procedural memory as new types of motor behaviours can be tried without harm during the state. In a way, it also fits with the proposed role of paradoxical sleep in setting up the sensorimotor system during development.


Asunto(s)
Consolidación de la Memoria , Sueño REM , Adaptación Psicológica , Emociones , Humanos , Consolidación de la Memoria/fisiología , Neuronas , Sueño , Sueño REM/fisiología
3.
J Sleep Res ; 31(4): e13601, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35430759

RESUMEN

It is 50 years ago, in 1972, that the founding conference of the European Sleep Research Society (ESRS) was organised in Basel. Since then the Society has had 13 presidents and a multitude of board members and has organised, among other things, another 24 congresses. At this 50th anniversary, as the 26th ESRS congress is approaching, we have summarised the history of the ESRS. In this review, we provide a background to show why the foundation of a European society was a logical step, and show how, in the course of the past 50 years, the Society changed and grew. We give special attention to some developments that occurred over the years and discuss where the ESRS stands now, and how we foresee its future.


Asunto(s)
Aniversarios y Eventos Especiales , Sociedades Médicas , Predicción , Humanos , Sueño , Sociedades Médicas/historia
4.
J Sleep Res ; 31(4): e13612, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35470494

RESUMEN

This manuscript presents an overview of REM sleep behaviour disorder (RBD) with a special focus on European contributions. After an introduction examining the history of the disorder, we address the pathophysiological and clinical aspects, as well as the diagnostic issues. Further, implications of RBD diagnosis and biomarkers are discussed. Contributions of European researchers to this field are highlighted.


Asunto(s)
Trastorno de la Conducta del Sueño REM , Humanos , Polisomnografía , Trastorno de la Conducta del Sueño REM/diagnóstico , Sueño REM/fisiología
5.
PLoS Biol ; 16(10): e2005982, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30307933

RESUMEN

It is crucial to determine whether rapid eye movement (REM) sleep and slow-wave sleep (SWS) (or non-REM sleep), identified in most mammals and birds, also exist in lizards, as they share a common ancestor with these groups. Recently, a study in the bearded dragon (P. vitticeps) reported states analogous to REM and SWS alternating in a surprisingly regular 80-s period, suggesting a common origin of the two sleep states across amniotes. We first confirmed these results in the bearded dragon with deep brain recordings and electro-oculogram (EOG) recordings. Then, to confirm a common origin and more finely characterize sleep in lizards, we developed a multiparametric approach in the tegu lizard, a species never recorded to date. We recorded EOG, electromyogram (EMG), heart rate, and local field potentials (LFPs) and included data on arousal thresholds, sleep deprivation, and pharmacological treatments with fluoxetine, a serotonin reuptake blocker that suppresses REM sleep in mammals. As in the bearded dragon, we demonstrate the existence of two sleep states in tegu lizards. However, no clear periodicity is apparent. The first sleep state (S1 sleep) showed high-amplitude isolated sharp waves, and the second sleep state (S2 sleep) displayed 15-Hz oscillations, isolated ocular movements, and a decrease in heart rate variability and muscle tone compared to S1. Fluoxetine treatment induced a significant decrease in S2 quantities and in the number of sharp waves in S1. Because S2 sleep is characterized by the presence of ocular movements and is inhibited by a serotonin reuptake inhibitor, as is REM sleep in birds and mammals, it might be analogous to this state. However, S2 displays a type of oscillation never previously reported and does not display a desynchronized electroencephalogram (EEG) as is observed in the bearded dragons, mammals, and birds. This suggests that the phenotype of sleep states and possibly their role can differ even between closely related species. Finally, our results suggest a common origin of two sleep states in amniotes. Yet, they also highlight a diversity of sleep phenotypes across lizards, demonstrating that the evolution of sleep states is more complex than previously thought.


Asunto(s)
Lagartos/fisiología , Sueño REM/fisiología , Sueño/fisiología , Animales , Evolución Biológica , Aves/fisiología , Encéfalo , Electroencefalografía/métodos , Electromiografía/métodos , Movimientos Oculares , Fluoxetina/farmacología , Mamíferos/fisiología , Filogenia , Privación de Sueño/fisiopatología , Sueño de Onda Lenta/fisiología
6.
J Sleep Res ; 29(6): e12976, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31943457

RESUMEN

The cFos immunostaining allowed the identification of multiple populations of neurons involved in the generation of paradoxical sleep. We adopted the transgenic (targeted recombination in active populations) mouse model, which following injection of tamoxifen, allows expression of Cre-dependent reporter constructs (i.e., mCherry) in neurons expressing cFos during waking or paradoxical sleep hypersomnia following automatic paradoxical sleep deprivation. Three groups of mice were subjected to two periods of waking, one period of waking and one of paradoxical sleep hypersomnia, or two periods of paradoxical sleep hypersomnia. A high percentage of double-labelled neurons was observed in the lateral hypothalamic area and zona incerta of two periods of waking and two periods of paradoxical sleep hypersomnia in mice, but not in those of one period of waking and one of paradoxical sleep hypersomnia in animals. Melanin-concentrating hormone neurons in the lateral hypothalamic area and Lhx6+ cells in the zona incerta constituted 5.7 ± 1.5% and 8.8 ± 2.3% of all mCherry+ cells and 20.6 ± 4.8% and 24.6 ± 5.9% of all cFos+ neurons in two periods of paradoxical sleep hypersomnia in animals. In addition, melanin-concentrating hormone cells as well as Lhx6+ neurons rarely expressed mCherry (or cFos) in the waking condition, in contrast to orexin neurons, which constituted approximately 30% of mCherry+ and cFos+ neurons. Our results validate the TRAP methodology and open the way to use it for identifying the neurons activated during waking and paradoxical sleep hypersomnia. Furthermore, they indicate for the first time that Lhx6+ neurons in the zona incerta, like melanin-concentrating hormone cells in the lateral hypothalamic area, are activated during paradoxical sleep hypersomnia but not during waking. These results indicate that Lhx6+ neurons might play a role in the control of paradoxical sleep, like the melanin-concentrating hormone cells.


Asunto(s)
Trastornos de Somnolencia Excesiva/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Modelos Genéticos , Privación de Sueño/metabolismo
8.
Handb Exp Pharmacol ; 253: 35-58, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29476336

RESUMEN

In the present chapter, hypotheses on the mechanisms responsible for the genesis of the three vigilance states, namely, waking, non-rapid eye movement (non-REM) also called slow-wave sleep (SWS), and REM sleep also called paradoxical sleep (PS), are presented. A huge number of studies first indicate that waking is induced by the activation of multiple waking systems, including the serotonergic, noradrenergic, cholinergic, and hypocretin systems. At the onset of sleep, the SWS-active neurons would be activated by the circadian clock localized in the suprachiasmatic nucleus and a hypnogenic factor, adenosine, which progressively accumulates in the brain during waking. A number of studies support the hypothesis that SWS results from the activation of GABAergic neurons localized in the ventrolateral preoptic nucleus (VLPO). However, new GABAergic systems recently described localized in the parafacial, accumbens, and reticular thalamic nuclei will be also presented. In addition, we will show that a large body of data strongly suggests that the switch from SWS to PS is due to the interaction of multiple populations of glutamatergic and GABAergic neurons localized in the posterior hypothalamus and the brainstem.


Asunto(s)
Sueño REM , Vigilia , Tronco Encefálico , Neuronas/fisiología , Sueño REM/fisiología , Vigilia/fisiología
9.
J Neurosci ; 37(45): 10877-10881, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118217

RESUMEN

Almost all areas of the neocortex are connected with the claustrum, a nucleus located between the neocortex and the striatum, yet the functions of corticoclaustral and claustrocortical connections remain largely obscure. As major efforts to model the neocortex are currently underway, it has become increasingly important to incorporate the corticoclaustral system into theories of cortical function. This Mini-Symposium was motivated by a series of recent studies which have sparked new hypotheses regarding the function of claustral circuits. Anatomical, ultrastructural, and functional studies indicate that the claustrum is most highly interconnected with prefrontal cortex, suggesting important roles in higher cognitive processing, and that the organization of the corticoclaustral system is distinct from the driver/modulator framework often used to describe the corticothalamic system. Recent findings supporting roles in detecting novel sensory stimuli, directing attention and setting behavioral states, were the subject of the Mini-Symposium at the 2017 Society for Neuroscience Annual Meeting.


Asunto(s)
Ganglios Basales/fisiología , Neocórtex/fisiología , Vías Nerviosas/fisiología , Animales , Ganglios Basales/anatomía & histología , Conducta/fisiología , Conducta Animal/fisiología , Humanos , Neocórtex/anatomía & histología , Vías Nerviosas/anatomía & histología
10.
J Neurosci ; 37(33): 8003-8013, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28729438

RESUMEN

It is widely accepted that cortical neurons are similarly more activated during waking and paradoxical sleep (PS; aka REM) than during slow-wave sleep (SWS). However, we recently reported using Fos labeling that only a few limbic cortical structures including the retrosplenial cortex (RSC) and anterior cingulate cortex (ACA) contain a large number of neurons activated during PS hypersomnia. Our aim in the present study was to record local field potentials and unit activity from these two structures across all vigilance states in freely moving male rats to determine whether the RSC and the ACA are electrophysiologically specifically active during basal PS episodes. We found that theta power was significantly higher during PS than during active waking (aWK) similarly in the RSC and hippocampus (HPC) but not in ACA. Phase-amplitude coupling between HPC theta and gamma oscillations strongly and specifically increased in RSC during PS compared with aWK. It did not occur in ACA. Further, 68% and 43% of the units recorded in the RSC and ACA were significantly more active during PS than during aWK and SWS, respectively. In addition, neuronal discharge of RSC but not of ACA neurons increased just after the peak of hippocampal theta wave. Our results show for the first time that RSC neurons display enhanced spiking in synchrony with theta specifically during PS. We propose that activation of RSC neurons specifically during PS may play a role in the offline consolidation of spatial memories, and in the generation of vivid perceptual scenery during dreaming.SIGNIFICANCE STATEMENT Fifty years ago, Michel Jouvet used the term paradoxical to define REM sleep because of the simultaneous occurrence of a cortical activation similar to waking accompanied by muscle atonia. However, we recently demonstrated using functional neuroanatomy that only a few limbic structures including the retrosplenial cortex (RSC) and anterior cingulate cortex (ACA) are activated during PS. In the present study, we show for the first time that the RSC and ACA contain neurons firing more during PS than in any other state. Further, RSC neurons are firing in phase with the hippocampal theta rhythm. These data indicate that the RSC is very active during PS and could play a key role in memory consolidation taking place during this state.


Asunto(s)
Corteza Cerebral/fisiología , Giro del Cíngulo/fisiología , Hipocampo/fisiología , Sueño REM/fisiología , Ritmo Teta/fisiología , Animales , Fenómenos Electrofisiológicos/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
11.
Brain ; 140(2): 414-428, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28007991

RESUMEN

SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream-enacting behaviours. These animals display symptoms and behaviours during paradoxical sleep that closely mimic human REM sleep behaviour disorder. Altogether, our data demonstrate that glutamate sublaterodorsal tegmental nucleus neurons generate muscle atonia during paradoxical sleep likely through descending projections to glycine/GABA premotor neurons in the ventral medulla. Although playing a role in paradoxical sleep regulation, they are, however, not necessary for inducing the state itself. The present work further validates a potent new preclinical REM sleep behaviour disorder model that opens avenues for studying and treating this disabling sleep disorder, and advances potential regions implicated in prodromal stages of synucleinopathies such as Parkinson's disease.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas/fisiología , Área Pretectal/patología , Trastorno de la Conducta del Sueño REM/patología , Animales , Recuento de Células , Toxina del Cólera/farmacocinética , Dependovirus/genética , Modelos Animales de Enfermedad , Transportador 5 de Aminoácidos Excitadores/genética , Transportador 5 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Masculino , Área Pretectal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Trastorno de la Conducta del Sueño REM/etiología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Privación de Sueño/complicaciones , Análisis Espectral , Estilbamidinas/farmacocinética
12.
Hippocampus ; 25(11): 1361-73, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25808129

RESUMEN

The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus.


Asunto(s)
Conducta Animal/fisiología , Región CA1 Hipocampal/fisiología , Hormonas Hipotalámicas/fisiología , Hipotálamo/citología , Melaninas/fisiología , Memoria a Corto Plazo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Hormonas Hipofisarias/fisiología , Sueño REM/fisiología , Animales , Ataxina-3/genética , Hormonas Hipotalámicas/genética , Hipotálamo/metabolismo , Melaninas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Hormonas Hipofisarias/genética
13.
J Sleep Res ; 24(3): 309-19, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25524602

RESUMEN

Studying paradoxical sleep homeostasis requires the specific and efficient deprivation of paradoxical sleep and the evaluation of the subsequent recovery period. With this aim, the small-platforms-over-water technique has been used extensively in rats, but only rare studies were conducted in mice, with no sleep data reported during deprivation. Mice are used increasingly with the emergence of transgenic mice and technologies such as optogenetics, raising the need for a reliable method to manipulate paradoxical sleep. To fulfil this need, we refined this deprivation method and analysed vigilance states thoroughly during the entire protocol. We also studied activation of hypocretin/orexin and melanin-concentrating hormone neurones using Fos immunohistochemistry to verify whether mechanisms regulating paradoxical sleep in mice are similar to those in rats. We showed that 48 h of deprivation was highly efficient, with a residual amount of paradoxical sleep of only 2.2%. Slow wave sleep and wake quantities were similar to baseline, except during the first 4 h of deprivation, where slow wave sleep was strongly reduced. After deprivation, we observed a 124% increase in paradoxical sleep quantities during the first hour of rebound. In addition, 34% of hypocretin/orexin neurones were activated during deprivation, whereas melanin-concentrated hormone neurones were activated only during paradoxical sleep rebound. Corticosterone level showed a twofold increase after deprivation and returned to baseline level after 4 h of recovery. In summary, a fairly selective deprivation and a significant rebound of paradoxical sleep can be obtained in mice using the small-platforms-over-water method. As in rats, rebound is accompanied by a selective activation of melanin-concentrating hormone neurones.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Neuronas/fisiología , Neuropéptidos/metabolismo , Hormonas Hipofisarias/metabolismo , Privación de Sueño/fisiopatología , Sueño REM/fisiología , Agua , Animales , Atención/fisiología , Corticosterona/metabolismo , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Orexinas , Polisomnografía , Ratas , Sueño/fisiología , Factores de Tiempo , Vigilia/fisiología
14.
Sleep Med Rev ; 74: 101907, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422648

RESUMEN

Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.


Asunto(s)
Tronco Encefálico , Sueño REM , Humanos , Sueño REM/fisiología , Tronco Encefálico/fisiología , Hipotálamo , Neuronas GABAérgicas/fisiología , Amígdala del Cerebelo
15.
J Neurosci ; 32(47): 16763-74, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23175830

RESUMEN

It has recently been shown that the ventrolateral part of the periaqueductal gray (VLPAG) and the adjacent dorsal deep mesencephalic nucleus (dDpMe) contain GABAergic neurons gating paradoxical sleep (PS) onset by means of their projection to the glutamatergic PS-on neurons of the sublaterodorsal tegmental nucleus (SLD). To determine the mechanisms responsible for the cessation of activity of these GABAergic PS-off neurons at the onset and during PS, we combined the immunostaining of c-FOS, a marker of neuronal activation, with cholera toxin b subunit (CTb) retrograde tracing from the VLPAG/dDpMe in three groups of rats (control, PS deprived, and PS hypersomniac). We found that the lateral hypothalamic area (LH) is the only brain structure containing a very large number of neurons activated during PS hypersomnia and projecting to the VLPAG/dDpMe. We further demonstrated that 44% of these neurons express the neuropeptide melanin concentrating hormone (MCH). We then showed that bilateral injections in the LH of two inhibitory compounds, clonidine (an α-2 adrenergic agonist) and muscimol (a GABAa agonist) induce an inhibition of PS. Furthermore, after muscimol injections in the LH, the VLPAG/dDpMe contained a large number of activated neurons, mostly GABAergic, and projecting to the SLD. Altogether, our results indicate for the first time that the activation of a population of LH neurons, in part MCH containing, is necessary for PS to occur. Furthermore, our results strongly suggest that these neurons trigger PS by means of their inhibitory projection to the PS-off GABAergic neurons located in the VLPAG/dDpMe.


Asunto(s)
Tronco Encefálico/fisiología , Neuronas GABAérgicas/fisiología , Área Hipotalámica Lateral/fisiología , Vías Nerviosas/fisiología , Sueño REM/fisiología , Animales , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Electroencefalografía/efectos de los fármacos , Electromiografía/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Glutamato Descarboxilasa/metabolismo , Área Hipotalámica Lateral/efectos de los fármacos , Inmunohistoquímica , Hibridación in Situ , Masculino , Vías Nerviosas/efectos de los fármacos , Neurotensina/metabolismo , Polisomnografía , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Sueño REM/efectos de los fármacos , Fijación del Tejido
16.
Pflugers Arch ; 463(1): 43-52, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22083642

RESUMEN

Paradoxical sleep (PS) is characterized by EEG activation with a disappearance of muscle tone and the occurrence of rapid eye movements (REM) in contrast to slow-wave sleep (SWS, also known as non-REM sleep) identified by the presence of delta waves. Soon after the discovery of PS, it was demonstrated that the structures necessary and sufficient for its genesis are restricted to the brainstem. We review here recent results indicating that brainstem glutamatergic and GABAergic, rather than cholinergic and monoaminergic, neurons play a key role in the genesis of PS. We hypothesize that the entrance to PS from SWS is due to the activation of PS-on glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. The activation of these neurons would be due to a permanent glutamatergic input arising from the lateral and ventrolateral periaqueductal gray (vlPAG) and the removal at the onset of PS of a GABAergic inhibition present during W and SWS. Such inhibition would be coming from PS-off GABAergic neurons localized in the vlPAG and the adjacent deep mesencephalic reticular nucleus. The cessation of activity of these PS-off GABAergic neurons at the onset and during PS would be due to direct projections from intermingled GABAergic PS-on neurons. Activation of PS would depend on the reciprocal interactions between the GABAergic PS-on and PS-off neurons, intrinsic cellular and molecular events, and integration of multiple physiological parameters.


Asunto(s)
Tronco Encefálico/fisiología , Sueño REM/fisiología , Animales , Humanos , Modelos Neurológicos , Red Nerviosa/fisiología
17.
J Sleep Res ; 26(6): 832-834, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29178163
18.
Bull Acad Natl Med ; 195(7): 1517-24; discussion 1524-5, 2011 Oct.
Artículo en Francés | MEDLINE | ID: mdl-22812158

RESUMEN

Paradoxical or REM sleep, characterized by cortical activation combined with muscle atonia and rapid eye movements, was discovered at the end of the 1950s by Michel Jouvet and William C. Dement. Studies over the next twenty years suggested that the onset and maintenance of paradoxical sleep was due to a reciprocal inhibitory interaction between monoaminergic neurons inhibiting PS and cholinergic neurons generating PS located in a small part of the pontine reticular formation called the sublaterodorsal tegmental nucleus. Our recent studies rather indicate that these neurons are respectively GABAergic and glutamatergic. Further, they suggest that three populations of GABAergic neurons and population of hypothalamic neurons expressing melanin concentrating hormone, a peptide, play a important role in PS control.


Asunto(s)
Sueño REM/fisiología , Tronco Encefálico/metabolismo , Humanos , Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Neuronas/fisiología , Hormonas Hipofisarias/metabolismo , Ácido gamma-Aminobutírico/metabolismo
19.
Sci Rep ; 11(1): 13078, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158548

RESUMEN

Hippocampal (HPC) theta oscillation during post-training rapid eye movement (REM) sleep supports spatial learning. Theta also modulates neuronal and oscillatory activity in the retrosplenial cortex (RSC) during REM sleep. To investigate the relevance of theta-driven interaction between these two regions to memory consolidation, we computed the Granger causality within theta range on electrophysiological data recorded in freely behaving rats during REM sleep, both before and after contextual fear conditioning. We found a training-induced modulation of causality between HPC and RSC that was correlated with memory retrieval 24 h later. Retrieval was proportional to the change in the relative influence RSC exerted upon HPC theta oscillation. Importantly, causality peaked during theta acceleration, in synchrony with phasic REM sleep. Altogether, these results support a role for phasic REM sleep in hippocampo-cortical memory consolidation and suggest that causality modulation between RSC and HPC during REM sleep plays a functional role in that phenomenon.


Asunto(s)
Giro del Cíngulo/fisiología , Consolidación de la Memoria/fisiología , Sueño REM/fisiología , Animales , Hipocampo/fisiología , Masculino , Memoria/fisiología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Sueño/fisiología , Ritmo Teta/fisiología , Vigilia/fisiología
20.
Sleep ; 44(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245290

RESUMEN

STUDY OBJECTIVES: Determine whether in the hippocampus and the supramammillary nucleus (SuM) the same neurons are reactivated when mice are exposed 1 week apart to two periods of wakefulness (W-W), paradoxical sleep rebound (PSR-PSR) or a period of W followed by a period of PSR (W-PSR). METHODS: We combined the innovative TRAP2 mice method in which neurons expressing cFos permanently express tdTomato after tamoxifen injection with cFos immunohistochemistry. RESULTS: We found out that a large number of tdTomato+ and cFos+ cells are localized in the dentate gyrus (DG) after PSR and W while CA1 and CA3 contained both types of neurons only after W. The number of cFos+ cells in the infrapyramidal but not the suprapyramidal blade of the DG was positively correlated with the amount of PS. In addition, we did not find double-labeled cells in the DG whatever the group of mice. In contrast, a high percentage of CA1 neurons were double-labeled in W-W mice. Finally, in the supramammillary nucleus, a large number of cells were double-labeled in W-W, PSR-PSR but not in W-PSR mice. CONCLUSIONS: Altogether, our results are the first to show that different neurons are activated during W and PS in the supramammillary nucleus and the hippocampus. Further, we showed for the first time that granule cells of the infrapyramidal blade of the DG are activated during PS but not during W. Further experiments are now needed to determine whether these granule cells belong to memory engrams inducing memory reactivation during PS.


Asunto(s)
Trastornos de Somnolencia Excesiva , Sueño REM , Animales , Giro Dentado/fisiología , Ratones , Neuronas/fisiología , Sueño REM/fisiología , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA