Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Brain Mapp ; 45(2): e26587, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339903

RESUMEN

Recent years have seen growing interest in characterizing the properties of regional brain dynamics and their relationship to other features of brain structure and function. In particular, multiple studies have observed regional differences in the "timescale" over which activity fluctuates during periods of quiet rest. In the cerebral cortex, these timescales have been associated with both local circuit properties as well as patterns of inter-regional connectivity, including the extent to which each region exhibits widespread connectivity to other brain areas. In the current study, we build on prior observations of an association between connectivity and dynamics in the cerebral cortex by investigating the relationship between BOLD fMRI timescales and the modular organization of structural and functional brain networks. We characterize network community structure across multiple scales and find that longer timescales are associated with greater within-community functional connectivity and diverse structural connectivity. We also replicate prior observations of a positive correlation between timescales and structural connectivity degree. Finally, we find evidence for preferential functional connectivity between cortical areas with similar timescales. We replicate these findings in an independent dataset. These results contribute to our understanding of functional brain organization and structure-function relationships in the human brain, and support the notion that regional differences in cortical dynamics may in part reflect the topological role of each region within macroscale brain networks.


Asunto(s)
Encéfalo , Corteza Cerebral , Humanos , Encéfalo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética , Descanso , Red Nerviosa/diagnóstico por imagen
2.
Proc Natl Acad Sci U S A ; 117(4): 2149-2159, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31937658

RESUMEN

Alcohol abuse and alcohol dependence are key factors in the development of alcohol use disorder, which is a pervasive societal problem with substantial economic, medical, and psychiatric consequences. Although our understanding of the neurocircuitry that underlies alcohol use has improved, novel brain regions that are involved in alcohol use and novel biomarkers of alcohol use need to be identified. The present study used a single-cell whole-brain imaging approach to 1) assess whether abstinence from alcohol in an animal model of alcohol dependence alters the functional architecture of brain activity and modularity, 2) validate our current knowledge of the neurocircuitry of alcohol abstinence, and 3) discover brain regions that may be involved in alcohol use. Alcohol abstinence resulted in the whole-brain reorganization of functional architecture in mice and a pronounced decrease in modularity that was not observed in nondependent moderate drinkers. Structuring of the alcohol abstinence network revealed three major brain modules: 1) extended amygdala module, 2) midbrain striatal module, and 3) cortico-hippocampo-thalamic module, reminiscent of the three-stage theory. Many hub brain regions that control this network were identified, including several that have been previously overlooked in alcohol research. These results identify brain targets for future research and demonstrate that alcohol use and dependence remodel brain-wide functional architecture to decrease modularity. Further studies are needed to determine whether the changes in coactivation and modularity that are associated with alcohol abstinence are causal features of alcohol dependence or a consequence of excessive drinking and alcohol exposure.


Asunto(s)
Abstinencia de Alcohol/psicología , Consumo de Bebidas Alcohólicas/fisiopatología , Encéfalo/fisiopatología , Consumo de Bebidas Alcohólicas/psicología , Amígdala del Cerebelo/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
3.
J Neurosci ; 41(10): 2229-2244, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33478989

RESUMEN

Understanding the relationship between neuroanatomy and function in portions of cortex that perform functions largely specific to humans such as lateral prefrontal cortex (LPFC) is of major interest in systems and cognitive neuroscience. When considering neuroanatomical-functional relationships in LPFC, shallow indentations in cortex known as tertiary sulci have been largely unexplored. Here, by implementing a multimodal approach and manually defining 936 neuroanatomical structures in 72 hemispheres (in both males and females), we show that a subset of these overlooked tertiary sulci serve as a meso-scale link between microstructural (myelin content) and functional (network connectivity) properties of human LPFC in individual participants. For example, the posterior middle frontal sulcus (pmfs) is a tertiary sulcus with three components that differ in their myelin content, resting-state connectivity profiles, and engagement across meta-analyses of 83 cognitive tasks. Further, generating microstructural profiles of myelin content across cortical depths for each pmfs component and the surrounding middle frontal gyrus (MFG) shows that both gyral and sulcal components of the MFG have greater myelin content in deeper compared with superficial layers and that the myelin content in superficial layers of the gyral components is greater than sulcal components. These findings support a classic, yet largely unconsidered theory that tertiary sulci may serve as landmarks in association cortices, as well as a modern cognitive neuroscience theory proposing a functional hierarchy in LPFC. As there is a growing need for computational tools that automatically define tertiary sulci throughout cortex, we share pmfs probabilistic sulcal maps with the field.SIGNIFICANCE STATEMENT Lateral prefrontal cortex (LPFC) is critical for functions that are thought to be specific to humans compared with other mammals. However, relationships between fine-scale neuroanatomical structures largely specific to hominoid cortex and functional properties of LPFC remain elusive. Here, we show that these structures, which have been largely unexplored throughout history, surprisingly serve as markers for anatomical and functional organization in human LPFC. These findings have theoretical, methodological, developmental, and evolutionary implications for improved understanding of neuroanatomical-functional relationships not only in LPFC, but also in association cortices more broadly. Finally, these findings ignite new questions regarding how morphological features of these neglected neuroanatomical structures contribute to functions of association cortices that are critical for human-specific aspects of cognition.


Asunto(s)
Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología , Conectoma/métodos , Femenino , Humanos , Masculino
4.
Neuroimage ; 222: 117224, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32795658

RESUMEN

Recent neuroimaging experiments have defined low-dimensional gradients of functional connectivity in the cerebral cortex that subserve a spectrum of capacities that span from sensation to cognition. Despite well-known anatomical connections to the cortex, the subcortical areas that support cortical functional organization have been relatively overlooked. One such structure is the thalamus, which maintains extensive anatomical and functional connections with the cerebral cortex across the cortical mantle. The thalamus has a heterogeneous cytoarchitecture, with at least two distinct cell classes that send differential projections to the cortex: granular-projecting 'Core' cells and supragranular-projecting 'Matrix' cells. Here we use high-resolution 7T resting-state fMRI data and the relative amount of two calcium-binding proteins, parvalbumin and calbindin, to infer the relative distribution of these two cell-types (Core and Matrix, respectively) in the thalamus. First, we demonstrate that thalamocortical connectivity recapitulates large-scale, low-dimensional connectivity gradients within the cerebral cortex. Next, we show that diffusely-projecting Matrix regions preferentially correlate with cortical regions with longer intrinsic fMRI timescales. We then show that the Core-Matrix architecture of the thalamus is important for understanding network topology in a manner that supports dynamic integration of signals distributed across the brain. Finally, we replicate our main results in a distinct 3T resting-state fMRI dataset. Linking molecular and functional neuroimaging data, our findings highlight the importance of the thalamic organization for understanding low-dimensional gradients of cortical connectivity.


Asunto(s)
Corteza Cerebral/fisiopatología , Vías Nerviosas/fisiopatología , Lóbulo Temporal/fisiopatología , Tálamo/fisiopatología , Adolescente , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Neuroimagen/métodos , Adulto Joven
5.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37502887

RESUMEN

Recent years have seen growing interest in characterizing the properties of regional brain dynamics and their relationship to other features of brain structure and function. In particular, multiple studies have observed regional differences in the "timescale" over which activity fluctuates during periods of quiet rest. In the cerebral cortex, these timescales have been associated with both local circuit properties as well as patterns of inter-regional connectivity, including the extent to which each region exhibits widespread connectivity to other brain areas. In the current study, we build on prior observations of an association between connectivity and dynamics in the cerebral cortex by investigating the relationship between BOLD fMRI timescales and the modular organization of structural and functional brain networks. We characterize network community structure across multiple scales and find that longer timescales are associated with greater within-community functional connectivity and diverse structural connectivity. We also replicate prior observations of a positive correlation between timescales and structural connectivity degree. Finally, we find evidence for preferential functional connectivity between cortical areas with similar timescales. We replicate these findings in an independent dataset. These results contribute to our understanding of functional brain organization and structure-function relationships in the human brain, and support the notion that regional differences in cortical dynamics may in part reflect the topological role of each region within macroscale brain networks.

6.
Netw Neurosci ; 4(1): 30-69, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32043043

RESUMEN

The brain is a complex, multiscale dynamical system composed of many interacting regions. Knowledge of the spatiotemporal organization of these interactions is critical for establishing a solid understanding of the brain's functional architecture and the relationship between neural dynamics and cognition in health and disease. The possibility of studying these dynamics through careful analysis of neuroimaging data has catalyzed substantial interest in methods that estimate time-resolved fluctuations in functional connectivity (often referred to as "dynamic" or time-varying functional connectivity; TVFC). At the same time, debates have emerged regarding the application of TVFC analyses to resting fMRI data, and about the statistical validity, physiological origins, and cognitive and behavioral relevance of resting TVFC. These and other unresolved issues complicate interpretation of resting TVFC findings and limit the insights that can be gained from this promising new research area. This article brings together scientists with a variety of perspectives on resting TVFC to review the current literature in light of these issues. We introduce core concepts, define key terms, summarize controversies and open questions, and present a forward-looking perspective on how resting TVFC analyses can be rigorously and productively applied to investigate a wide range of questions in cognitive and systems neuroscience.

7.
Nat Neurosci ; 22(11): 1751-1760, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31611705

RESUMEN

Cognition and behavior emerge from brain network interactions, such that investigating causal interactions should be central to the study of brain function. Approaches that characterize statistical associations among neural time series-functional connectivity (FC) methods-are likely a good starting point for estimating brain network interactions. Yet only a subset of FC methods ('effective connectivity') is explicitly designed to infer causal interactions from statistical associations. Here we incorporate best practices from diverse areas of FC research to illustrate how FC methods can be refined to improve inferences about neural mechanisms, with properties of causal neural interactions as a common ontology to facilitate cumulative progress across FC approaches. We further demonstrate how the most common FC measures (correlation and coherence) reduce the set of likely causal models, facilitating causal inferences despite major limitations. Alternative FC measures are suggested to immediately start improving causal inferences beyond these common FC measures.


Asunto(s)
Encéfalo/fisiología , Neuroimagen Funcional/métodos , Modelos Neurológicos , Vías Nerviosas/fisiología , Animales , Humanos , Estudios de Validación como Asunto
8.
Psychiatry Res Neuroimaging ; 266: 53-58, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28605662

RESUMEN

In this pilot study, we examined training effects of a computerized working memory program on resting state functional magnetic resonance imaging (fMRI) measures in children with neurofibromatosis type 1 (NF1). We contrasted pre- with post-training resting state fMRI and cognitive measures from 16 participants (nine males; 11.1 ± 2.3 years) with NF1 and documented working memory difficulties. Using non-parametric permutation test inference, we found significant regionally specific differences (family-wise error corrected) in two of four voxel-wise resting state measures: fractional amplitude of low frequency fluctuations (indexing peak-to-trough intensity of spontaneous oscillations) and regional homogeneity (indexing local intrinsic synchrony). Some cognitive task improvement was observed as well. These preliminary findings suggest that regionally specific changes in resting state fMRI indices may be associated with treatment-related cognitive amelioration in NF1. Nevertheless, current results must be interpreted with caution pending independent controlled replication.


Asunto(s)
Encéfalo/fisiopatología , Remediación Cognitiva/métodos , Neuroimagen Funcional/métodos , Memoria a Corto Plazo/fisiología , Neurofibromatosis 1/rehabilitación , Adolescente , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA