Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33893232

RESUMEN

An inherent strength of evolved collective systems is their ability to rapidly adapt to dynamic environmental conditions, offering resilience in the face of disruption. This is thought to arise when individual sensory inputs are filtered through local interactions, producing an adaptive response at the group level. To understand how simple rules encoded at the individual level can lead to the emergence of robust group-level (or distributed) control, we examined structures we call "scaffolds," self-assembled by Eciton burchellii army ants on inclined surfaces that aid travel during foraging and migration. We conducted field experiments with wild E. burchellii colonies, manipulating the slope over which ants traversed, to examine the formation of scaffolds and their effects on foraging traffic. Our results show that scaffolds regularly form on inclined surfaces and that they reduce losses of foragers and prey, by reducing slipping and/or falling of ants, thus facilitating traffic flow. We describe the relative effects of environmental geometry and traffic on their growth and present a theoretical model to examine how the individual behaviors underlying scaffold formation drive group-level effects. Our model describes scaffold growth as a control response at the collective level that can emerge from individual error correction, requiring no complex communication among ants. We show that this model captures the dynamics observed in our experiments and is able to predict the growth-and final size-of scaffolds, and we show how the analytical solution allows for estimation of these dynamics.


Asunto(s)
Hormigas/fisiología , Conducta Animal/fisiología , Conducta Cooperativa , Animales , Hormigas/metabolismo , Conducta Alimentaria , Conducta Social
2.
Opt Express ; 29(23): 38084-38094, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808868

RESUMEN

The organic terahertz (THz) generation crystal BNA has recently gained traction as a source for producing broadband THz pulses. When pumped with 100 fs pulses, the thin BNA crystals can produce relatively high electric fields with frequency components out to 5 THz. However, the THz output with 800-nm pump wavelength is limited by the damage threshold of the material, particularly when using a 1 kHz or higher repetition rate laser. Here, we report that the damage threshold of BNA THz generation crystals can be significantly improved by bonding BNA to a high-thermal conductivity sapphire window. When pumped with 800-nm light from an amplified Ti:sapphire laser system, this higher damage threshold enables generation of 2.5× higher electric field strengths compared to bare BNA crystals. We characterize the average damage threshold for bare BNA and BNA-sapphire, measure peak-to-peak electric field strengths and THz waveforms, and determine the nonlinear transmission in BNA. Pumping BNA bonded to sapphire with 3 mJ 800-nm pulses results in peak-to-peak electric fields exceeding 1 MV/cm, with broadband frequency components >3 THz. This high-field, broadband THz source is a promising alternative to tilted pulse front LiNbO3 THz sources, enabling many research groups without optical parametric amplifiers to perform high-field, broadband THz spectroscopy.

3.
Proc Natl Acad Sci U S A ; 112(49): 15113-8, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598673

RESUMEN

The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ?bridges" of linked individuals that are constructed to span gaps in the colony's foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost-benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost-benefit trade-off, without any individual unit's having information on global benefits or costs.


Asunto(s)
Hormigas/fisiología , Análisis Costo-Beneficio , Animales , Conducta Alimentaria
4.
PLoS Comput Biol ; 9(2): e1002915, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468605

RESUMEN

The spontaneous emergence of pattern formation is ubiquitous in nature, often arising as a collective phenomenon from interactions among a large number of individual constituents or sub-systems. Understanding, and controlling, collective behavior is dependent on determining the low-level dynamical principles from which spatial and temporal patterns emerge; a key question is whether different group-level patterns result from all components of a system responding to the same external factor, individual components changing behavior but in a distributed self-organized way, or whether multiple collective states co-exist for the same individual behaviors. Using schooling fish (golden shiners, in groups of 30 to 300 fish) as a model system, we demonstrate that collective motion can be effectively mapped onto a set of order parameters describing the macroscopic group structure, revealing the existence of at least three dynamically-stable collective states; swarm, milling and polarized groups. Swarms are characterized by slow individual motion and a relatively dense, disordered structure. Increasing swim speed is associated with a transition to one of two locally-ordered states, milling or highly-mobile polarized groups. The stability of the discrete collective behaviors exhibited by a group depends on the number of group members. Transitions between states are influenced by both external (boundary-driven) and internal (changing motion of group members) factors. Whereas transitions between locally-disordered and locally-ordered group states are speed dependent, analysis of local and global properties of groups suggests that, congruent with theory, milling and polarized states co-exist in a bistable regime with transitions largely driven by perturbations. Our study allows us to relate theoretical and empirical understanding of animal group behavior and emphasizes dynamic changes in the structure of such groups.


Asunto(s)
Conducta Animal/fisiología , Cyprinidae/fisiología , Modelos Biológicos , Natación/fisiología , Animales , Simulación por Computador
5.
Adv Mater ; 34(16): e2107900, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35238078

RESUMEN

A data mining approach to discover and develop new organic nonlinear optical crystals that produce intense pulses of terahertz radiation is demonstrated. The Cambridge Structural Database is mined for non-centrosymmetric materials and these structural data are used in tandem with density functional theory calculations to predict new materials that efficiently generate terahertz radiation. This enables us to (in a relatively short time) discover, synthesize, and grow large, high-quality crystals of four promising materials and characterize them for intense terahertz generation. In a direct comparison to the current state-of-the-art organic terahertz generation crystals, these new materials excel. The discovery and characterization of these novel terahertz generators validate the approach of combining data mining with density functional theory calculations to predict properties of high-performance organic materials, potentially for a host of exciting applications.

6.
Bioinspir Biomim ; 16(5)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34284360

RESUMEN

Fish have evolved diverse and robust locomotive strategies to swim efficiently in complex fluid environments. However, we know little, if anything, about how these strategies can be achieved. Although most studies suggest that fish rely on the lateral line system to sense local flow and optimise body undulation, recent work has shown that fish are still able to gain benefits from the local flow even with the lateral line impaired. In this paper, we hypothesise that fish can save energy by extracting vortices shed from their neighbours using only simple proprioceptive sensing with the caudal fin. We tested this hypothesis on both computational and robotic fish by synthesising a central pattern generator (CPG) with feedback, proprioceptive sensing, and reinforcement learning. The CPG controller adjusts the body undulation after receiving feedback from the proprioceptive sensing signal, decoded via reinforcement learning. In our study, we consider potential proprioceptive sensing inputs to consist of low-dimensional signals (e.g. perceived forces) detected from the flow. With simulations on a computational robot and experiments on a robotic fish swimming in unknown dynamic flows, we show that the simple proprioceptive sensing is sufficient to optimise the body undulation to save energy, without any input from the lateral line. Our results reveal a new sensory-motor mechanism in schooling fish and shed new light on the strategy of control for robotic fish swimming in complex flows with high efficiency.


Asunto(s)
Sistema de la Línea Lateral , Robótica , Animales , Fenómenos Biomecánicos , Peces , Natación
7.
J R Soc Interface ; 15(141)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29669894

RESUMEN

Aggregating multiple non-expert opinions into a collective estimate can improve accuracy across many contexts. However, two sources of error can diminish collective wisdom: individual estimation biases and information sharing between individuals. Here, we measure individual biases and social influence rules in multiple experiments involving hundreds of individuals performing a classic numerosity estimation task. We first investigate how existing aggregation methods, such as calculating the arithmetic mean or the median, are influenced by these sources of error. We show that the mean tends to overestimate, and the median underestimate, the true value for a wide range of numerosities. Quantifying estimation bias, and mapping individual bias to collective bias, allows us to develop and validate three new aggregation measures that effectively counter sources of collective estimation error. In addition, we present results from a further experiment that quantifies the social influence rules that individuals employ when incorporating personal estimates with social information. We show that the corrected mean is remarkably robust to social influence, retaining high accuracy in the presence or absence of social influence, across numerosities and across different methods for averaging social information. Using knowledge of estimation biases and social influence rules may therefore be an inexpensive and general strategy to improve the wisdom of crowds.


Asunto(s)
Conocimiento , Red Social , Humanos , Funciones de Verosimilitud , Conducta Social , Estadística como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA