Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 77(2): 368-383.e7, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31677973

RESUMEN

Interphase chromatin is hierarchically organized into higher-order architectures that are essential for gene functions, yet the biomolecules that regulate these 3D architectures remain poorly understood. Here, we show that scaffold attachment factor B (SAFB), a nuclear matrix (NM)-associated protein with RNA-binding functions, modulates chromatin condensation and stabilizes heterochromatin foci in mouse cells. SAFB interacts via its R/G-rich region with heterochromatin-associated repeat transcripts such as major satellite RNAs, which promote the phase separation driven by SAFB. Depletion of SAFB leads to changes in 3D genome organization, including an increase in interchromosomal interactions adjacent to pericentromeric heterochromatin and a decrease in genomic compartmentalization, which could result from the decondensation of pericentromeric heterochromatin. Collectively, we reveal the integrated roles of NM-associated proteins and repeat RNAs in the 3D organization of heterochromatin, which may shed light on the molecular mechanisms of nuclear architecture organization.


Asunto(s)
Heterocromatina/genética , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas Asociadas a Matriz Nuclear/genética , Satélite de ARN/genética , Receptores de Estrógenos/genética , Animales , Línea Celular , Cromatina/genética , Genoma/genética , Humanos , Ratones
2.
Small ; 20(4): e2305870, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37705123

RESUMEN

All-inorganic cesium lead bromide quantum dots (CsPbBr3 -QD) compounds are potential candidates for optoelectronic devices, because of their excellent fluorescence luminescence and thermal stability. However, the many heterojunction interfaces and large band gap induce the low power conversion efficiency in the CsPbBr3 -QD heterojunction, limiting its practical applications. Hereby, in combination with the pressure regulation and TiO2 /CsPbBr3 -QD heterojunction, the interface interaction within the heterojunction can be enhanced and the band gap can be narrowed. The pressure-induced O─Ti─O bond softening and PbBr6 octahedron stiffening at the interface region significantly enhance the interface interactions that are favorable to the carrier transport. Compared with CsPbBr3 -QD, the atomic interaction between Pb and Br of TiO2 /CsPbBr3 -QD heterojunction can be dramatically enhanced at high pressures, leading to increased band gap narrowing rate by two times, which is useful to widen the absorption spectrum. The fluorescence intensity increases by two times. Compression increases the photocurrent and maintains it after the pressure is released, which is due to the enhanced interface interaction induced by the high pressure. The findings provide new opportunities to adjust the physical properties of perovskite heterogeneous structures, and have important applications in the field of new-generation photovoltaic devices.

3.
Plant Dis ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985507

RESUMEN

Blue honeysuckle (Lonicera caerulea L.) has contributed to maintaining the forest's ecological balance and remarkable frost-resistant abilities, helping it withstand extremely cold conditions (-46 °C) and a wide pH range (5 to 8) (Sharma and Lee 2021). Between September 2022 and September 2023, leaf spots were observed on approximately 30% of blue honeysuckle plants of the 'Lanjingling' cultivar grown in a 1.13 ha field in Da Hinggan Ling Prefecture (50.32° N, 124.13° E) in Heilongjiang Province, China. The leaves of the affected plants displayed black-colored spots. To identify the causal agents, 10 healthy and symptomatic leaves were randomly collected from ten healthy and infected individual plants, respectively. Small (3 to 4 mm) segments of the symptomatic tissues were immersed in 5% sodium hypochlorite (NaOCl) for 3 min, rinsed three times with sterile distilled water, dried in a paper towel, and plated on 9-cm Petri dishes containing potato dextrose agar (PDA). Ten fungal colonies developed on the PDA plates with an isolation frequency of 100% from 10 symptomatic leaves, and all colonies displayed a morphology consistent with Cladosporium spp. (Bensch et al. 2018). Cladosporium-like fungi were not isolated from healthy leaves. Dark olive-colored mycelia were observed, with straight unbranched conidiophores bearing terminal light brown-colored limoniform conidia (1.80 to 4.50 × 2.10 to 12.60 µm) and surrounded by a thin line of white mycelium (Delisle-Houde et al. 2024). To confirm this identification, PCR amplification of two representative strains LD-299 and LD-300 genomic DNA was performed with ITS1/ITS4 (White et al. 1990) and ACT512F/ACT783R (Carbone and Kohn 1999) primers. Basic local alignment search tool (BLAST) analyses of the National Center for Biotechnology Information database showed that sequences of the ITS (PP600316, PP600317) and ACT (PP624334, PP624335) all revealed 100% (493/493 nt, 493/493 nt; 181/181 nt, 181/181 nt) shared identity with Cladosporium pseudocladosporioides strain ex-type MF473195 and HM148674 (Bensch et al. 2010), respectively. Using a neighbor-joining phylogenetic analysis based on the ITS and ACT sequences, isolates LD-299 and LD-300 clustered in the same clade of C. pseudocladosporioides. Therefore, based on its morphological characteristics and molecular phylogeny, the two isolates were identified as C. pseudocladosporioides (Cosseboom and Hu 2023). A pathogenicity test was performed using nine healthy two-year-old blue honeysuckle Lanjingling plants. Three plants were inoculated with either the LD-299 or the LD-300 conidial suspension (1 × 106 spores/ml) or with clean water as an experimental control (Aydogdu et al. 2023). All plants were cultured in a greenhouse (28℃, 75% relative humidity, 12 h light and dark cycle), and each experiment was replicated three times. Typical leaf spot symptoms were first observed on the inoculated leaves after 10 days. Morphological and molecular characterization of re-isolated pathogens from the artificially infected leaves indicated that the two isolates were identical, thereby confirming Koch's postulates. Cladosporium pseudocladosporioides previously caused leaf spot disease on artichoke (Cynara scolymus) in Türkiye (Aydogdu et al. 2023). To the best of our knowledge, this is the first report of C. pseudocladosporioides causing leaf spots on blue honeysuckle in China. Blue honeysuckle production losses due to the leaf spots are critical for growers. Therefore, further focus should be given to investigate the host range and geographic distribution of C. pseudocladosporioides.

4.
Plant Dis ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803067

RESUMEN

Recently, interest in cultivating blue honeysuckle (Lonicera caerulea L.) for horticulture and medicinal uses has grown (Sharma and Lee 2021). Between September 2022 and September 2023, a leaf spot disease (Fig. S1) was observed on approximately 20% of 'Lanjingling' blue honeysuckles grown in a 0.18 ha field in Qiqihar city (123.43°E, 47.92°N), Heilongjiang Province, China. Infected plants displayed black leaf spots that expanded to cover the entire leaf. Small, 3 to 4 mm segments of infected tissue were surface sterilized with 75% ethanol for 30 s and 5% sodium hypochlorite (NaOCl) for 3 min, rinsed three times with sterile distilled water, dried on paper towels, and plated in 9 cm Petri dishes containing potato dextrose agar (PDA) (Ma et al. 2023). To induce sporulation, nine purified cultures (Fig. S2) with similar culture characteristics were finally obtained from ten infected plants and they displayed a conidia morphology consistent with Neopestalotiopsis spp., no other fungi were isolated, and the isolation frequency was 90%. Conidiomata (Fig. S3) were brown to black and distributed in concentric rings with an average size of 261.98 (60.30-451.80) µm (n = 50). The conidia (Fig. S3) were fusoid and had four septa, straight to slightly curved, with an average size of 23.48 (13.50-30.30) × 5.42 (4.50-9.30) µm(n = 50), while basal and apical cells were hyaline and the three middle cells were brown with darker septa. PCR amplification was performed with ITS1/ITS4 (White et al. 1990), EFl-728F/EF1-986R (Carbone and Kohn 1999), and Btub2Fd/Btub4Rd (Glass and Donaldson 1995) primers from the genomic DNA of the LD-330. Sequences of ITS (PP033584), TEF (PP048757), and TUB (PP048758) revealed 99 to 100% (499/500, 255/255, and 481/486) shared identity with Neopestalotiopsis rosae sequences (NR145243, KM199524, and KM199430) (Rebollar-Alviter et al. 2020). Therefore, based on morphological characteristics and molecular phylogeny, LD-330 was identified as N. rosae. Six two-year-old healthy plants of the 'Lanjingling' cultivar were selected for a pathogenicity test (Yan et al. 2023). The leaves were surface disinfected with 75% alcohol and then wiped with sterilized water three times. Three plants were inoculated with 10 ml of LD-330 conidial suspension (1 × 106 spores/ml) or with sterile water as an experimental control, respectively. All plants were in closed plastic bag, incubated in a greenhouse at 28 ℃ and 75% relative humidity (RH) under a 12-h light/dark cycle, and each experiment was performed three times (Rebollar-Alviter et al. 2020). Typical leaf spot symptoms were observed on inoculated leaves after 14 days (Fig. S4), whereas no symptoms were detected on water-treated leaves. The same pathogen was reisolated from infected leaves, displayed the same morphological and molecular traits, and was again identified as N. rosae, confirming Koch's postulate. Neopestalotiopsis rosae was previously reported on pecan (Gao et al. 2022), causing black leaf spot disease in China. To our knowledge, this is the first report of a blue honeysuckle leaf spot caused by N. rosae in China and specifically in the Heilongjiang province which has the largest blue honeysuckle cultivation area in the country. Future research should be directed toward developing comprehensive management measures.

5.
Plant Dis ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764338

RESUMEN

Blue honeysuckle (Lonicera caerulea L.) cultivation has gradually expanded in China but continues to be limited by challenges such as leaf spot disease. Between September 2022 and September 2023, a leaf spot disease was observed on approximately 30% of 'Lanjingling' blue honeysuckles grown in a 2.66 ha field (a total of about 11,000 plants) in Jiamusi city (130.47°E, 46.16°N), Heilongjiang Province, China. Affected plants displayed brown necrotic lesions on their leaves that gradually expanded in area until the leaves fell off the plant entirely. Small, 3 to 4 mm segments of infected tissue from 50 randomly selected leaves were surface sterilized with 75% ethanol for 30 s and 5% sodium hypochlorite (NaOCl) for 3 min, rinsed three times with sterile distilled water, dried on paper towels, and plated in 9 cm Petri dishes containing potato dextrose agar (PDA) (Yan et al. 2022). Five pathogens (LD-232, LD-233, LD-234, LD-235, and LD-236) were isolated on PDA and displayed a conidia morphology consistent with Pseudopithomyces spp. (Perelló et al. 2017). The fungal colonies on PDA were villiform, white, and whorled and had sparse aerial mycelium on the surface with black conidiomata. The conidia were obpyriform and dark brown, had 0 to 3 transverse and 0 to 1 longitudinal septa, and measured 9.00 to 15.30 µm × 5.70 to 9.30 µm in size (n = 50). Genomic DNA was extracted from a representative isolate, LD-232, for molecular verification and PCR amplification was performed with ITS1/ITS4 (White et al. 1990), LROR/LR7 (Carbone and Kohn 1999), and RPB2-5F2/RPB2-7CR (Liu et al. 1999) primers. Sequences of LD-232 ITS (OR835654), LSU (OR835652), and RPB2 (OR859769) revealed 99.8% (530/531 nt), 98.8% (639/647 nt), and 99.8% (1015/1017 nt) shared identity with Pseudopithomyces chartarum sequences (OP269600, OP237014, and MK434892), respectively (Wu et al. 2023). Bayesian inference (BI) was used to construct the phylogenies using Mr. Bayes v. 3.2.7 to confirm the identity of the isolates (Ariyawansa et al. 2015). Phylogenetic trees cannot be constructed based on the genes' concatenated sequences because selective strains do not have complete rDNA-ITS, LSU, and RPB2 sequences. Therefore, based on the morphological characteristics and molecular phylogeny, LD-232 was identified as P. chartarum (Perelló et al. 2017; Wu et al. 2023). A pathogenicity test was performed with six healthy, two-year-old 'Lanjingling' blue honeysuckle plants. Three plants were inoculated by spraying the LD-232 conidial suspension (1 × 106 spores/ml) or clean water as an experimental control condition (Wu et al. 2023; Yan et al. 2023). All plants were cultured in a greenhouse at 28℃ under a 12-h light/dark cycle, and each experiment was replicated three times. Typical leaf spot symptoms were observed on inoculated leaves after 10 days. The same pathogens were reisolated from infected leaves, displayed the same morphological and molecular traits, and were again identified as P. chartarum, confirming Koch's postulate. P. chartarum previously caused leaf spot disease on Tetrapanax papyrifer in China (Wu et al. 2023). To our knowledge, this is the first report of blue honeysuckle leaf spot caused by P. chartarum in China. Identification of P. chartarum as a disease agent on blue honeysuckle will help guide future management of leaf diseases for this economically important small fruit tree.

6.
Crit Rev Food Sci Nutr ; : 1-24, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36999956

RESUMEN

With the high incidence of chronic diseases, precise nutrition is a safe and efficient nutritional intervention method to improve human health. Food functional ingredients are an important material base for precision nutrition, which have been researched for their application in preventing diseases and improving health. However, their poor solubility, stability, and bad absorption largely limit their effect on nutritional intervention. The establishment of a stable targeted delivery system is helpful to enhance their bioavailability, realize the controlled release of functional ingredients at the targeted action sites in vivo, and provide nutritional intervention approaches and methods for precise nutrition. In this review, we summarized recent studies about the types of targeted delivery systems for the delivery of functional ingredients and their digestion fate in the gastrointestinal tract, including emulsion-based delivery systems and polymer-based delivery systems. The building materials, structure, size and charge of the particles in these delivery systems were manipulated to fabricate targeted carriers. Finally, the targeted delivery systems for food functional ingredients have gained some achievements in nutritional intervention for inflammatory bowel disease (IBD), liver disease, obesity, and cancer. These findings will help in designing fine targeted delivery systems, and achieving precise nutritional intervention for food functional ingredients on human health.

7.
Eur Radiol ; 33(4): 2399-2406, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36462047

RESUMEN

OBJECTIVE: The complexity of radiographic Tanner-Whitehouse method makes it less acceptable by radiologists and endocrinologists to assess bone age. Conventional ultrasound could be used to measure the ratio of the height of the ossification center to the epiphysis of the bone to evaluate maturity of bone. The purpose of this study is to obtain radiographic TW3 skeletal maturity score with ultrasound images. METHODS: In this prospective diagnostic study, participants aged between 1 and 18 years undergoing radiography for bone age evaluation were evaluated from April 2019 to November 2021. Ultrasonic skeletal maturity scores of participants were transformed into radiographic skeletal maturity scores with the fitted formulas established in this study. Diagnostic performances of the transformed scores to diagnose advanced or delayed bone age were confirmed. Ultrasound images of 50 participants in the validation group were re-evaluated to confirm inter-rater reliability. RESULTS: A total of 442 participants (median age, 9.5 years [interquartile range, 7.8-11.1 years]; 185 boys) were enrolled. Ultrasound determination of bone age had a sensitivity of 97% (34/35, 95% CI: 83, 99) and a specificity of 98% (106/108, 95% CI: 93, 99) to diagnose advanced or delayed bone age. The intra-class correlation coefficient for inter-rater reliability was 0.993 [95% CI: 0.988, 0.996], p < 0.0001. CONCLUSIONS: Radiographic Tanner-Whitehouse skeletal maturity score could be obtained from ultrasound images in a simple, fast, accurate, and radiation-free manner. KEY POINTS: • The fitting formulas between radiographic TW3 skeletal maturity score and ultrasonic skeletal maturity score were developed. • Through measurement of ossification ratios of bones with ultrasound, TW3 skeletal maturity score was obtained in a simple, fast, and radiation-free manner.


Asunto(s)
Determinación de la Edad por el Esqueleto , Osteogénesis , Masculino , Humanos , Lactante , Preescolar , Niño , Adolescente , Determinación de la Edad por el Esqueleto/métodos , Reproducibilidad de los Resultados , Estudios Prospectivos , Radiografía
8.
Vet Res ; 54(1): 22, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918891

RESUMEN

Orf virus (ORFV) is the causative agent of contagious ecthyma, which is an important zoonotic pathogen with a widespread distribution affecting sheep, goats and humans. Our previous research showed that autophagy can be induced in host cells by ORFV infection. However, the exact mechanism of ORFV-induced autophagy remains unknown. In this study, we investigated the underlying mechanisms of autophagy induced by ORFV in OFTu cells and the impact of autophagy on ORFV replication. By using specific autophagy inhibitors and activators, Western blotting, immunofluorescence and transmission electron microscopy imaging, we confirmed that ORFV infection triggered intracellular autophagosome accumulation and the activation of autophagic flux. Moreover, ORFV-induced autophagic activity was found to rely on an increase in the phosphorylation of tuberous sclerosis complex 2 (TSC2) and a decrease in the phosphorylation of mammalian target of rapamycin (mTOR), which is mediated by the suppression of the PI3K/AKT/mTOR signalling pathway and activation of the ERK1/2/mTOR signalling pathway. Furthermore, we investigated the role of mTOR-mediated autophagy during ORFV replication using pharmacological agents and demonstrated that ORFV-induced autophagy correlated positively with viral replication. Taken together, our data reveal the pathways of ORFV-induced autophagy and the impact of autophagy on ORFV replication, providing new insights into ORFV pathogenesis.


Asunto(s)
Virus del Orf , Animales , Humanos , Autofagia , Sistema de Señalización de MAP Quinasas , Virus del Orf/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ovinos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral
9.
Can J Microbiol ; 69(8): 321-327, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37249446

RESUMEN

Endophytic bacteria play crucial roles in the growth and bioactive compound synthesis of host plants. In this study, the composition and diversity of endophytic bacteria in the roots, stems, and leaves from 3-year-old artificially cultivated Huperzia serrata were investigated using Illumina HiSeq sequencing technology. Total effective reads were assigned to 936 operational taxonomic units (OTUs), belonging to 12 phyla and 289 genera. A total of 28, 3, and 2 OTUs were exclusive to the roots, stems, and leaves, respectively. The bacterial richness and diversity in the roots were significantly lower than those in the leaves and stems. The dominant genera with significant distribution differences among these plant tissue samples were Burkholderia-Caballeronia-Paraburkholderia, Sphingomonas, Acidibacter, Bradyrhizobium, Bryobacter, Methylocella, Nocardioides, Acidothermus, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium. Furthermore, the differences in the bacterial communities associated with these plant tissue samples were visualized using principal coordinate analysis and cluster pedigree diagrams. Linear discriminant analysis effect size explained statistically significant differences among the endophytic bacterial microbiota in these plant tissue samples. Overall, this study provides new insights into the diversity and distribution patterns of endophytic bacteria in the different tissues of H. serrata.


Asunto(s)
Actinomycetales , Huperzia , Huperzia/microbiología , Endófitos/genética , Bacterias/genética , Plantas , Raíces de Plantas/microbiología
10.
J Ultrasound Med ; 42(6): 1249-1256, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36480130

RESUMEN

OBJECTIVE: To confirm the inter-side difference of bone age evaluated with conventional ultrasound. METHODS: In this prospective study, patients aged between 3 and 15 years with referral for bone age evaluation from the pediatric outpatient and inpatient department in our general medical institute were enrolled from March to October 2021. Bone ages from left and right side were evaluated with ultrasound using a summed ossification ratio of radius, ulna, and femur in all patients. For comparison, radiographic bone ages were assessed with X-ray films of the left hand and wrist. RESULTS: A total of 192 patients were enrolled into the study, including 95 boys (10.5 years [3.2-14.6 years]) and 97 girls (8.7 years [3.7-15.4 years]). In the girls, the ossification ratio of the right radius was greater than the left (P = .030) and the ultrasonic bone age from the right side was more advanced than the left (P = .007). The differences of the left and right ultrasonic bone age were -0.66 to 0.61 years in the boys and -0.89 to 0.67 years in the girls. The differences of right ultrasonic bone age and radiographic bone age were -0.77 to 1.01 years in the boys and -1.12 to 1.14 years in the girls. The differences of left ultrasonic bone age and radiographic bone age were -0.73 to 0.91 years in the boys and -1.16 to 0.90 years in the girls. CONCLUSIONS: Clinically important difference can be obtained from the left and right side when assessed bone age with the ossification ratio of bones by ultrasound, especially in girls. Both sides should be evaluated in clinical work.


Asunto(s)
Mano , Muñeca , Masculino , Femenino , Niño , Humanos , Preescolar , Adolescente , Estudios Prospectivos , Muñeca/diagnóstico por imagen , Mano/diagnóstico por imagen , Osteogénesis , Huesos , Determinación de la Edad por el Esqueleto
11.
Plant Dis ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526487

RESUMEN

China has the largest blue honeysuckle (Lonicera caerulea L.) cultivation area globally. In June 2022, leaf spots were observed on approximately 10% of blue honeysuckle (cv. 'Lanjingling') leaves in a 0.03-ha field in Harbin (127.66°E, 45.61°N), Heilongjiang Province, China. The leaves of the affected plants displayed chlorotic to tan dieback with a darker brown margin along the leaftip and leave margins. Cross-sectional segments of approximately 3 mm were cut from 50 typical infected plant leaves. Their surfaces were sterilized with 75% ethanol for 30 s followed by 3 min in 5% sodium hypochlorite (NaOCl), rinsed three times with sterile water, and transferred to 9-cm Petri dishes containing 15 ml of sterile PDA growth medium. Five purified cultures with similar culture characteristics were finally obtained and their colonies were dark brown on the PDA plates. The pycnidia were subglobular and deep black and measured avg. 215.48 (135.30-331.20) µm × avg. 170.28 (99.90-282.90) µm (n = 50) (Chen et al., 2015; Huang et al., 2018). Conidia were single-celled, hyaline, and ellipsoidal and measured avg. 6.22 (5.40-7.20) µm × avg. 3.42 (2.70-3.90) µm (n = 50). For molecular verification, genomic DNA was extracted from a representative isolate, LD-75. The internal transcribed spacer region (ITS), the second-largest subunit of RNA polymerase II (rpb2), the partial 28S large subunit rDNA (LSU), beta-tubulin (TUB), and actin (ACT) genes were amplified with the primers ITS1/ITS4, RPB2f/RPB2r, LROR/LR7, TUB2Fd/TUB4Rd, and ACT512f/ACT783R, respectively (White et al. 1990; Carbone and Kohn, 1999; Staats et al., 2005; de Gruyter et al., 2009; Chen et al., 2015). BLAST results indicated that the genes of LD-75 (GenBank OP218870, OP264863, OQ561448, OQ597233, and OQ597232) shared 99%-100% identity with those of Didymella glomerata (OK485138, GU371781, EU754185, MZ073910, and MW963190, respectively). Therefore, based on morphological characteristics and molecular phylogeny, LD-75 was identified as D. glomerata. Six two-year-old healthy plants from the 'Lanjingling' cultivar were selected for a pathogenicity test. The leaves were surface disinfested with 75% ethanol and then wiped with sterilized water three times. All plants were cultured in a greenhouse at 28℃ under a 12-h light/dark cycle. Whole plants sprayed with conidial suspension of isolate LD-75 (106 spores/mL) (n = 3) displayed leaf spot symptoms after 14 d, while no symptoms were detected on whole plants sprayed with sterile water (n = 3). The same isolate, reisolated from infected leaves and with the same morphological and molecular traits, was also identified as D. glomerata, confirming Koch's postulate. The fungus was previously reported in Cornus officinalis in Nanyang City, China (Huang et al., 2018). To our knowledge, this is the first report of blue honeysuckle leaf spot caused by D. glomerata in China. Reducing blue honeysuckle production losses caused by leaf spots is crucial for growers, and we hope that researchers will develop efficient control strategies for managing this emerging plant disease.

12.
BMC Plant Biol ; 22(1): 371, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35883045

RESUMEN

BACKGROUND: Cannabis is an important industrial crop species whose fibre, seeds, flowers and leaves are widely used by humans. The study of cannabinoids extracted from plants has been popular research topic in recent years. China is one of the origins of cannabis and one of the few countries with wild cannabis plants. However, the genetic structure of Chinese cannabis and the degree of adaptive selection remain unclear. RESULTS: The main morphological characteristics of wild cannabis in China were assessed. Based on whole-genome resequencing SNPs, Chinese cannabis could be divided into five groups in terms of geographical source and ecotype: wild accessions growing in the northwestern region; wild accessions growing in the northeastern region; cultivated accessions grown for fibre in the northeastern region; cultivated accessions grown for seed in northwestern region, and cultivated accessions in southwestern region. We further identified genes related to flowering time, seed germination, seed size, embryogenesis, growth, and stress responses selected during the process of cannabis domestication. The expression of flowering-related genes under long-day (LD) and short-day (SD) conditions showed that Chinese cultivated cannabis is adapted to different photoperiods through the regulation of Flowering locus T-like (FT-like) expression. CONCLUSION: This study clarifies the genetic structure of Chinese cannabis and offers valuable genomic resources for cannabis breeding.


Asunto(s)
Cannabis , Genoma de Planta , Cannabis/genética , Humanos , Fenotipo , Fitomejoramiento , Selección Genética , Análisis de Secuencia de ADN
13.
J Virol ; 95(19): e0015321, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34287041

RESUMEN

Orf virus (ORFV) is a highly epitheliotropic parapoxvirus with zoonotic significance that induces proliferative lesions in the skin of sheep, goats, and humans. Several viral proteins carried by ORFV, including nuclear factor-κB (NF-κB) inhibitors, play important roles in hijacking host-associated proteins for viral evasion of the host innate immune response. However, the roles of proteins with unknown functions in viral replication and latent infection remain to be explored. Here, we present data demonstrating that the ORF120, an early-late ORFV-encoded protein, activates the NF-κB pathway in the early phase of infection, which implies that ORFV may regulate NF-κB through a biphasic mechanism. A DUAL membrane yeast two-hybrid system and coimmunoprecipitation experiments revealed that the ORF120 protein interacts with Ras-GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1). The overexpression of the ORF120 protein can efficiently increase the expression of G3BP1 and nuclear translocation of NF-κB-p65 in primary ovine fetal turbinate (OFTu) and HeLa cells. The knockdown of G3BP1 significantly decreased ORF120-induced NF-κB activation, indicating that G3BP1 is involved in ORF120-induced NF-κB pathway activation. A dual-luciferase reporter assay revealed that ORF120 could positively regulate the NF-κB pathway through the full-length G3BP1 or the domain of G3BP1RRM+RGG. In conclusion, we demonstrate, for the first time, that the ORF120 protein is capable of positively regulating NF-κB signaling by interacting with G3BP1, providing new insights into ORFV pathogenesis and a theoretical basis for antiviral drug design. IMPORTANCE As part of the host innate response, the nuclear factor-κB (NF-κB) pathway plays a partial antiviral role in nature by regulating the innate immune response. Thus, the NF-κB pathway is probably the most frequently targeted intracellular pathway for subversion by anti-immune modulators that are carried by a wide range of pathogens. Various viruses, including poxviruses, carry several proteins that prepare the host cell for viral replication by inhibiting cytoplasmic events, leading to the initiation of NF-κB transcriptional activity. However, NF-κB activity is hypothesized to facilitate viral replication to a great extent. The significance of our research is in the exploration of the activation mechanism of NF-κB induced by the Orf virus (ORFV) ORF120 protein interacting with G3BP1, which helps not only to explain the ability of ORFV to modulate the immune response through the positive regulation of NF-κB but also to show the mechanism by which the virus evades the host innate immune response.


Asunto(s)
ADN Helicasas/metabolismo , Ectima Contagioso/virología , FN-kappa B/metabolismo , Virus del Orf/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas Virales/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , ADN Helicasas/química , Células HeLa , Humanos , Virus del Orf/genética , Virus del Orf/crecimiento & desarrollo , Virus del Orf/patogenicidad , Proteínas de Unión a Poli-ADP-Ribosa/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Helicasas/química , Proteínas con Motivos de Reconocimiento de ARN/química , Ovinos , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Transcripción Genética , Activación Transcripcional , Proteínas Virales/genética , Virulencia
14.
Sensors (Basel) ; 22(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684759

RESUMEN

Vehicle-infrastructure cooperative perception is an ingenious way to eliminate environmental perception blind areas of connected and autonomous vehicles (CAVs). However, if the infrastructure transmits all environmental information to the nearby CAVs, the transmission load is so heavy that it causes a waste of network resources, such as time and bandwidth, because parts of the information are redundant for the CAVs. It is an efficient manner for the infrastructure to merely transmit the information about objects which cannot be perceived by the CAVs. Therefore, the infrastructure needs to predict whether an object is perceptible for a CAV. In this paper, a machine-leaning-based model is established to settle this problem, and a data filter is also designed to enhance the prediction accuracy in various scenarios. Based on the proposed model, the infrastructure transmits the environmental information selectively, which significantly reduces the transmission load. The experiments prove that the prediction accuracy of the model achieves up to 95%, and the transmission load is reduced by 55%.


Asunto(s)
Vehículos a Motor , Percepción , Recolección de Datos
15.
Entropy (Basel) ; 24(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35205442

RESUMEN

The stock index is an important indicator to measure stock market fluctuation, with a guiding role for investors' decision-making, thus being the object of much research. However, the stock market is affected by uncertainty and volatility, making accurate prediction a challenging task. We propose a new stock index forecasting model based on time series decomposition and a hybrid model. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) decomposes the stock index into a series of Intrinsic Mode Functions (IMFs) with different feature scales and trend term. The Augmented Dickey Fuller (ADF) method judges the stability of each IMFs and trend term. The Autoregressive Moving Average (ARMA) model is used on stationary time series, and a Long Short-Term Memory (LSTM) model extracts abstract features of unstable time series. The predicted results of each time sequence are reconstructed to obtain the final predicted value. Experiments are conducted on four stock index time series, and the results show that the prediction of the proposed model is closer to the real value than that of seven reference models, and has a good quantitative investment reference value.

16.
Angew Chem Int Ed Engl ; 61(28): e202205491, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35506663

RESUMEN

The eco-friendly properties enable two-dimensional (2D) Cu-based perovskites as ideal candidates for next-generation optoelectronics, but practical application is limited by low photoelectric conversion efficiency because of poor carrier transport abilities. Here, we report enhanced structural stability of 2D CuBr4 perovskites under compression up to 30 GPa, without obvious volume collapse or structural amorphization, by inserting organic C6 H5 CH2 NH3 (PMA) groups between layers. The band gap value of (PMA)2 CuBr4 can be effectively tuned from 1.8 to 1.47 eV by employing external pressures, leading to a broadened absorption range of 400-800 nm. Notably, we successfully detected photoconductivity of the photoresponse at pressures from 10 to 40 GPa; the maximum value of 5×10-3  S cm-1 is observed at 28 GPa, indicating potential applications for high performance photovoltaic candidates under extreme conditions.

17.
Hum Brain Mapp ; 42(12): 3950-3962, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33978292

RESUMEN

The structural covariance network (SCN) has provided a perspective on the large-scale brain organization impairment in the Alzheimer's Disease (AD) continuum. However, the successive structural impairment across brain regions, which may underlie the disrupted SCN in the AD continuum, is not well understood. In the current study, we enrolled 446 subjects with AD, mild cognitive impairment (MCI) or normal aging (NA) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The SCN as well as a casual SCN (CaSCN) based on Granger causality analysis were applied to the T1-weighted structural magnetic resonance images of the subjects. Compared with that of the NAs, the SCN was disrupted in the MCI and AD subjects, with the hippocampus and left middle temporal lobe being the most impaired nodes, which is in line with previous studies. In contrast, according to the 194 subjects with records on CSF amyloid and Tau, the CaSCN revealed that during AD progression, the CaSCN was enhanced. Specifically, the hippocampus, thalamus, and precuneus/posterior cingulate cortex (PCC) were identified as the core regions in which atrophy originated and could predict atrophy in other brain regions. Taken together, these findings provide a comprehensive view of brain atrophy in the AD continuum and the relationships among the brain atrophy in different regions, which may provide novel insight into the progression of AD.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Corteza Cerebral/patología , Disfunción Cognitiva/patología , Progresión de la Enfermedad , Tálamo/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Atrofia/patología , Corteza Cerebral/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Tálamo/diagnóstico por imagen
18.
Genome Res ; 28(2): 192-202, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29273625

RESUMEN

Eukaryotic chromosomes are folded into higher-order conformations to coordinate genome functions. In addition to long-range chromatin loops, recent chromosome conformation capture (3C)-based studies have indicated higher levels of chromatin structures including compartments and topologically associating domains (TADs), which may serve as units of genome organization and functions. However, the molecular machinery underlying these hierarchically three-dimensional (3D) chromatin architectures remains poorly understood. Via high-throughput assays, including in situ Hi-C, DamID, ChIP-seq, and RNA-seq, we investigated roles of the Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU), a nuclear matrix (NM)-associated protein, in 3D genome organization. Upon the depletion of HNRNPU in mouse hepatocytes, the coverage of lamina-associated domains (LADs) in the genome increases from 53.1% to 68.6%, and a global condensation of chromatin was observed. Furthermore, disruption of HNRNPU leads to compartment switching on 7.5% of the genome, decreases TAD boundary strengths at borders between A (active) and B (inactive) compartments, and reduces chromatin loop intensities. Long-range chromatin interactions between and within compartments or TADs are also significantly remodeled upon HNRNPU depletion. Intriguingly, HNRNPU mainly associates with active chromatin, and 80% of HNRNPU peaks coincide with the binding of CTCF or RAD21. Collectively, we demonstrated that HNRNPU functions as a major factor maintaining 3D chromatin architecture, suggesting important roles of NM-associated proteins in genome organization.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromosomas/genética , Genoma/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Animales , Cromatina/genética , Hepatocitos/metabolismo , Ratones , Matriz Nuclear/genética
19.
Radiology ; 300(1): 176-183, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34003051

RESUMEN

Background There is limited literature on conventional US to assess bone age. Purpose To determine the diagnostic performance of US in the assessment of abnormal bone age in Chinese children. Materials and Methods In this prospective study, children and young adults aged between birth and 19 years from a large provincial teaching hospital were enrolled from January to November 2020. Children without clinical diseases potentially affecting skeletal growth were included in the normal-value group. Children with clinically suspected growth disturbances who were undergoing bone age evaluation were included in the validation group. Ossification ratios (ie, the ratio of the height of the epiphyseal ossification center to the entire epiphysis, including the cartilaginous component) of the radius, ulna, and femur from all the children were measured using US. Ultrasonic skeletal maturity scores (ie, the summation of ossification ratios of the radius, ulna, and femur multiplied by 100) collected from children in the normal-value group were used for score-for-age curve fitting through Box-Cox power exponential distribution. Test performance characteristics for the ability of US to help diagnose abnormal bone age were determined using radiographic bone age as a reference standard. Statistically significant difference between groups was determined by using a paired-sample t test. Results A total of 1089 children (median age, 9 years [interquartile range, 3-14 years]; 578 boys) were enrolled, including 929 children (mean age, 8 years [interquartile range, 4-12 years]; 515 boys) in the normal-value group and 160 children (mean age, 9 years [interquartile range, 7-11 years]; 63 boys) in the validation group. Ultrasonic bone ages in the validation group were evaluated with use of the lists of normal score-for-age values. With radiographic bone age as a reference standard, US could help diagnose abnormal bone age with high sensitivity (93% [14 of 15 participants; 95% CI: 66, 100] for boys, 100% [14 of 14 participants; 95% CI: 73, 100] for girls) and specificity (98% [47 of 48 participants; 95% CI: 88, 100] for boys, 98% [81 of 83 participants; 95% CI: 91, 100] for girls). Conclusion The US scoring system established can be used to evaluate bone age with high sensitivity and specificity. Clinical trial registration no. ChiCTR1900027917 © RSNA, 2021 Online supplemental material is available for this article.


Asunto(s)
Determinación de la Edad por el Esqueleto/métodos , Ultrasonografía/métodos , Adolescente , Niño , Preescolar , China , Femenino , Fémur/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Masculino , Radio (Anatomía)/diagnóstico por imagen , Cúbito/diagnóstico por imagen , Adulto Joven
20.
Opt Lett ; 45(15): 4208-4211, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735260

RESUMEN

Surface-enhanced Raman scattering (SERS) is highly promising for ultra-sensitive detection in a series of applications. Although extensive advances have been achieved in SERS technologies, the preparation of highly efficient SERS substrates still suffers from several limitations, including complex preparation procedures, high cost, and instability for long time storage. To address these problems, we report a novel, to the best of our knowledge, SERS platform that combines graphene oxide (GO) and cellulose composite paper with colloidal silver nanoparticle (Ag NP) ink. As an efficient substrate, the GO and cellulose composite paper that features hierarchical micro-nanostructures and improved interaction with target molecules can be fabricated on a large scale, and the Ag NP ink can be well stored, avoiding being oxidized in ambient conditions. In this way, our SERS platform not only reduces the cost, but also improved the stability. The sensitivity, reproducibility, and tunable SERS detection performance were evaluated using rhodamine 6G as probing molecules. To demonstrate the capability of our SERS platform in practical analysis, the SERS spectra of two monosodium salt solutions of different concentrations have been collected. The SERS platform has revealed great potential for practical application of SERS technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA