Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(1): 281-289, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32697379

RESUMEN

Amplified spontaneous emission (ASE) is intrinsically associated with lasing applications. Inefficient photon energy transfer to ASE is a long-standing issue for organic semiconductors that consist of multiple competing radiative decay pathways, far from being rationally regulated from the perspective of molecular arrangements. Herein, we achieve controllable molecular packing motifs by halogen-bonded cocrystallization, leading to ten times increased radiative decay rate, four times larger ASE radiative decay selectivity and thus remarkable ASE threshold decrease from 223 to 22 µJ cm-2 , albeit with a low photoluminescence quantum yield. We have made an in-depth investigation on the relationship among molecular arrangements, vibration modes, radiative decay profiles and ASE properties. The results suggest that cocrystallization presents a powerful approach to tailor the radiative decay pathways, which is fundamentally important to the development of organic ASE and lasing materials.

2.
ACS Nano ; 12(6): 5359-5367, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29697963

RESUMEN

Controlled fabrication of organic polymorphisms with well-defined dimensions and tunable luminescent properties plays an important role in developing optoelectronic devices, sensors, and biolabeling agents but remains a challenge due to the weak intermolecular interactions among organic molecules. Herein, we developed a two-step solution self-assembly method for the controlled preparation of blue-emissive or green-emissive microribbons (MRs) of difluoroboron avobenzone (BF2AVB) by adjusting the cluster-mediated nucleation and subsequent one-dimensional growth processes. We found that blue-emissive MRs belong to the monoclinic phase, in which BF2AVB molecules form slipped π-stacks, resulting in J-aggregates with the solid-state photoluminescence efficiency φ = 68%. Meanwhile, green-emissive MRs are ascribed to the orthorhombic phase and exhibit cofacial π-stacks, which lead to H-aggregates with φ = 24%. Furthermore, these as-prepared MRs can both act as polymorph-dependent Fabry-Pérot resonators for lasing oscillators. The strategy described here might offer significant promise for the coherent light source of optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA