Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 30(28): 9588-96, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20631187

RESUMEN

Neural representation is pivotal in neuroscience. Yet, the large number and variance of underlying determinants make it difficult to distinguish general physiologic constraints on representation. Here we offer a general approach to the issue, enabling a systematic and well controlled experimental analysis of constraints and tradeoffs, imposed by the physiology of neuronal populations, on plausible representation schemes. Using in vitro networks of rat cortical neurons as a model system, we compared the efficacy of different kinds of "neural codes" to represent both spatial and temporal input features. Two rate-based representation schemes and two time-based representation schemes were considered. Our results indicate that, by large, all representation schemes perform well in the various discrimination tasks tested, indicating the inherent redundancy in neural population activity; Nevertheless, differences in representation efficacy are identified when unique aspects of input features are considered. We discuss these differences in the context of neural population dynamics.


Asunto(s)
Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Estimulación Eléctrica , Electrofisiología , Modelos Neurológicos , Ratas , Ratas Sprague-Dawley
2.
PLoS Comput Biol ; 4(11): e1000228, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19023409

RESUMEN

The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen.


Asunto(s)
Corteza Cerebral/fisiología , Biología Computacional/métodos , Red Nerviosa/fisiología , Neuronas/fisiología , Potenciales de Acción , Algoritmos , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Electrodos , Microtecnología , Modelos Neurológicos , Vías Nerviosas/fisiología , Neurobiología/métodos , Ratas , Ratas Sprague-Dawley , Potenciales Sinápticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA