Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Cancer ; 155(5): 946-956, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38733362

RESUMEN

Endometrial cancer (EC) is one of the most common female cancers and there is currently no routine screening strategy for early detection. An altered abundance of circulating microRNAs (miRNAs) and other RNA classes have the potential as early cancer biomarkers. We analyzed circulating RNA levels using small RNA sequencing, targeting RNAs in the size range of 17-47 nucleotides, in EC patients with samples collected prior to diagnosis compared to cancer-free controls. The analysis included 316 cases with samples collected 1-11 years prior to EC diagnosis, and 316 matched controls, both from the Janus Serum Bank cohort in Norway. We identified differentially abundant (DA) miRNAs, isomiRs, and small nuclear RNAs between EC cases and controls. The top EC DA miRNAs were miR-155-5p, miR-200b-3p, miR-589-5p, miR-151a-5p, miR-543, miR-485-5p, miR-625-p, and miR-671-3p. miR-200b-3p was previously reported to be among one of the top miRNAs with higher abundance in EC cases. We observed 47, 41, and 32 DA miRNAs for EC interacting with BMI, smoking status, and physical activity, respectively, including two miRNAs (miR-223-3p and miR-29b-3p) interacting with all three factors. The circulating RNAs are altered and show temporal dynamics prior to EC diagnosis. Notably, DA miRNAs for EC had the lowest q-value 4.39-6.66 years before diagnosis. Enrichment analysis of miRNAs showed that signaling pathways Fc epsilon RI, prolactin, toll-like receptor, and VEGF had the strongest associations.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Endometriales , Humanos , Femenino , Neoplasias Endometriales/sangre , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Persona de Mediana Edad , Anciano , MicroARN Circulante/sangre , Estudios de Casos y Controles , MicroARNs/sangre , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Noruega/epidemiología , Adulto
2.
Front Cell Dev Biol ; 12: 1428538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055655

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs), including citalopram, are widely used antidepressants during pregnancy. However, the effects of prenatal exposure to citalopram on neurodevelopment remain poorly understood. We aimed to investigate the impact of citalopram exposure on early neuronal differentiation of human embryonic stem cells using a multi-omics approach. Citalopram induced time- and dose-dependent effects on gene expression and DNA methylation of genes involved in neurodevelopmental processes or linked to depression, such as BDNF, GDF11, CCL2, STC1, DDIT4 and GAD2. Single-cell RNA-sequencing analysis revealed distinct clusters of stem cells, neuronal progenitors and neuroblasts, where exposure to citalopram subtly influenced progenitor subtypes. Pseudotemporal analysis showed enhanced neuronal differentiation. Our findings suggest that citalopram exposure during early neuronal differentiation influences gene expression patterns associated with neurodevelopment and depression, providing insights into its potential neurodevelopmental impact and highlighting the importance of further research to understand the long-term consequences of prenatal SSRI exposure.

3.
Res Sq ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39011115

RESUMEN

Psychological stress during pregnancy is known to have a range of long-lasting negative consequences on the development and health of offspring. Here, we tested whether a measure of prenatal early-life stress was associated with a biomarker of physiological development at birth, namely epigenetic gestational age, using foetal cord-blood DNA-methylation data. Longitudinal cohorts from the Netherlands (Generation R Study [Generation R], n = 1,396), the UK (British Avon Longitudinal Study of Parents and Children [ALSPAC], n = 642), and Norway (Mother, Father and Child Cohort Study [MoBa], n1 = 1,212 and n2 = 678) provided data on prenatal maternal stress and genome-wide DNA methylation from cord blood and were meta-analysed (pooled n = 3,928). Measures of epigenetic age acceleration were calculated using three different gestational epigenetic clocks: "Bohlin", "EPIC overlap" and "Knight". Prenatal stress exposure, examined as an overall cumulative score, was not significantly associated with epigenetically-estimated gestational age acceleration or deceleration in any of the clocks, based on the results of the pooled meta-analysis or those of the individual cohorts. No significant associations were identified with specific domains of prenatal stress exposure, including negative life events, contextual (socio-economic) stressors, parental risks (e.g., maternal psychopathology) and interpersonal risks (e.g., family conflict). Further, no significant associations were identified when analyses were stratified by sex. Overall, we find little support that prenatal psychosocial stress is associated with variation in epigenetic age at birth within the general paediatric population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA