RESUMEN
The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.
Asunto(s)
Autofagosomas/virología , COVID-19/virología , Autofagia , COVID-19/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Endosomas/fisiología , Endosomas/virología , Aparato de Golgi/fisiología , Células HEK293 , Células HeLa , Humanos , Fusión de Membrana , Microscopía Confocal , Fagosomas/metabolismo , Fagosomas/virología , Proteínas Qa-SNARE/biosíntesis , Receptores sigma/biosíntesis , SARS-CoV-2 , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/biosíntesis , Sinaptotagminas/biosíntesis , Receptor Sigma-1RESUMEN
Cells use noncanonical autophagy, also called conjugation of ATG8 to single membranes (CASM), to label damaged intracellular compartments with ubiquitin-like ATG8 family proteins in order to signal danger caused by pathogens or toxic compounds. CASM relies on E3 complexes to sense membrane damage, but so far, only the mechanism to activate ATG16L1-containing E3 complexes, associated with proton gradient loss, has been described. Here, we show that TECPR1-containing E3 complexes are key mediators of CASM in cells treated with a variety of pharmacological drugs, including clinically relevant nanoparticles, transfection reagents, antihistamines, lysosomotropic compounds, and detergents. Interestingly, TECPR1 retains E3 activity when ATG16L1 CASM activity is obstructed by the Salmonella Typhimurium pathogenicity factor SopF. Mechanistically, TECPR1 is recruited by damage-induced sphingomyelin (SM) exposure using two DysF domains, resulting in its activation and ATG8 lipidation. In vitro assays using purified human TECPR1-ATG5-ATG12 complex show direct activation of its E3 activity by SM, whereas SM has no effect on ATG16L1-ATG5-ATG12. We conclude that TECPR1 is a key activator of CASM downstream of SM exposure.
Asunto(s)
Esfingomielinas , Ubiquitinas , Humanos , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismoRESUMEN
Lysosome integrity is essential for cell viability, and lesions in lysosome membranes are repaired by the ESCRT machinery. Here, we describe an additional mechanism for lysosome repair that is activated independently of ESCRT recruitment. Lipidomic analyses showed increases in lysosomal phosphatidylserine and cholesterol after damage. Electron microscopy demonstrated that lysosomal membrane damage is rapidly followed by the formation of contacts with the endoplasmic reticulum (ER), which depends on the ER proteins VAPA/B. The cholesterol-binding protein ORP1L was recruited to damaged lysosomes, accompanied by cholesterol accumulation by a mechanism that required VAP-ORP1L interactions. The PtdIns 4-kinase PI4K2A rapidly produced PtdIns4P on lysosomes upon damage, and knockout of PI4K2A inhibited damage-induced accumulation of ORP1L and cholesterol and led to the failure of lysosomal membrane repair. The cholesterol-PtdIns4P transporter OSBP was also recruited upon damage, and its depletion caused lysosomal accumulation of PtdIns4P and resulted in cell death. We conclude that ER contacts are activated on damaged lysosomes in parallel to ESCRTs to provide lipids for membrane repair, and that PtdIns4P generation and removal are central in this response.
Asunto(s)
Receptores de Esteroides , Receptores de Esteroides/metabolismo , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Colesterol/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismoRESUMEN
Autophagy plays an essential role in the defense against many microbial pathogens as a regulator of both innate and adaptive immunity. Some pathogens have evolved sophisticated mechanisms that promote their ability to evade or subvert host autophagy. Here, we describe a novel mechanism of autophagy modulation mediated by the recently discovered Vibrio cholerae cytotoxin, motility-associated killing factor A (MakA). pH-dependent endocytosis of MakA by host cells resulted in the formation of a cholesterol-rich endolysosomal membrane aggregate in the perinuclear region. Aggregate formation induced the noncanonical autophagy pathway driving unconventional LC3 (herein referring to MAP1LC3B) lipidation on endolysosomal membranes. Subsequent sequestration of the ATG12-ATG5-ATG16L1 E3-like enzyme complex, required for LC3 lipidation at the membranous aggregate, resulted in an inhibition of both canonical autophagy and autophagy-related processes, including the unconventional secretion of interleukin-1ß (IL-1ß). These findings identify a novel mechanism of host autophagy modulation and immune modulation employed by V. cholerae during bacterial infection.
Asunto(s)
Proteínas Asociadas a Microtúbulos , Vibrio cholerae , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Citotoxinas , Vitamina B 12/análogos & derivadosRESUMEN
The obligate intracellular bacteria Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted diseases, multiply in a vacuolar compartment, the inclusion. From this niche, they secrete "effector" proteins, that modify cellular activities to enable bacterial survival and proliferation. Here, we show that the host autophagy-related protein 16-1 (ATG16L1) restricts inclusion growth and that this effect is counteracted by the secretion of the bacterial effector CT622/TaiP (translocated ATG16L1 interacting protein). ATG16L1 is mostly known for its role in the lipidation of the human homologs of ATG8 (i.e., LC3 and homologs) on double membranes during autophagy as well as on single membranes during LC3-associated phagocytosis and other LC3-lipidation events. Unexpectedly, the LC3-lipidation-related functions of ATG16L1 are not required for restricting inclusion development. We show that the carboxyl-terminal domain of TaiP exposes a mimic of an eukaryotic ATG16L1-binding motif that binds to ATG16L1's WD40 domain. By doing so, TaiP prevents ATG16L1 interaction with the integral membrane protein TMEM59 and allows the rerouting of Rab6-positive compartments toward the inclusion. The discovery that one bacterial effector evolved to target ATG16L1's engagement in intracellular traffic rather than in LC3 lipidation brings this "secondary" activity of ATG16L1 in full light and emphasizes its importance for maintaining host cell homeostasis.
Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Chlamydia trachomatis/fisiología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Bacterianas/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Autophagy is a highly conserved catabolic process through which defective or otherwise harmful cellular components are targeted for degradation via the lysosomal route. Regulatory pathways, involving post-translational modifications such as phosphorylation, play a critical role in controlling this tightly orchestrated process. Here, we demonstrate that TBK1 regulates autophagy by phosphorylating autophagy modifiers LC3C and GABARAP-L2 on surface-exposed serine residues (LC3C S93 and S96; GABARAP-L2 S87 and S88). This phosphorylation event impedes their binding to the processing enzyme ATG4 by destabilizing the complex. Phosphorylated LC3C/GABARAP-L2 cannot be removed from liposomes by ATG4 and are thus protected from ATG4-mediated premature removal from nascent autophagosomes. This ensures a steady coat of lipidated LC3C/GABARAP-L2 throughout the early steps in autophagosome formation and aids in maintaining a unidirectional flow of the autophagosome to the lysosome. Taken together, we present a new regulatory mechanism of autophagy, which influences the conjugation and de-conjugation of LC3C and GABARAP-L2 to autophagosomes by TBK1-mediated phosphorylation.
Asunto(s)
Autofagosomas , Proteínas Asociadas a Microtúbulos , Autofagosomas/metabolismo , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Péptido Hidrolasas , FosforilaciónRESUMEN
Several autophagy proteins contain an LC3-interacting region (LIR) responsible for their interaction with Atg8 homolog proteins. Here, we show that ALFY binds selectively to LC3C and the GABARAPs through a LIR in its WD40 domain. Binding of ALFY to GABARAP is indispensable for its recruitment to LC3B-positive structures and, thus, for the clearance of certain p62 structures by autophagy. In addition, the crystal structure of the GABARAP-ALFY-LIR peptide complex identifies three conserved residues in the GABARAPs that are responsible for binding to ALFY. Interestingly, introduction of these residues in LC3B is sufficient to enable its interaction with ALFY, indicating that residues outside the LIR-binding hydrophobic pockets confer specificity to the interactions with Atg8 homolog proteins.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Línea Celular Tumoral , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/ultraestructura , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Factores de Transcripción/ultraestructuraRESUMEN
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Results from several neurodegenerative model systems indicate that elimination of the disease-associated inclusions can lead to symptomatic reversal, and a better understanding of the mechanisms involved in accumulation and turnover of aggregation-prone proteins is therefore important. Autophagy has been found to contribute to protein aggregate clearance, and the term aggrephagy is used to describe the selective degradation of aggregation-prone proteins by autophagy. Here, we provide an overview of different disease-related model systems and assays that can be used to distinguish non-aggregated from aggregation-prone proteins, and how these assays can be used to determine turnover of protein aggregates by autophagy.
Asunto(s)
Autofagia/genética , Bioensayo/métodos , Degeneración Nerviosa/genética , Enfermedades Neurodegenerativas/genética , Humanos , Degeneración Nerviosa/patología , Enfermedades Neurodegenerativas/patología , Agregación Patológica de Proteínas/genética , Ubiquitinación/genéticaRESUMEN
Conjugation of ATG8 to single membranes (CASM) is a fundamental cellular process that entails the conjugation of mammalian Atg8 homologs, here referred to as ATG8, to phosphatidylethanolamine (PE) and phosphatidylserine (PS) on endolysosomal compartments. Our current research, together with recent reports from the Randow, Wu, and Wileman labs, has uncovered yet another layer to this process. We discovered that, in addition to ATG16L1-containing complexes, TECPR1 (tectonin beta-propeller repeat containing 1)-containing ATG12-ATG5 E3 complexes can facilitate CASM, thereby providing a broader understanding of this pathway.
Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Mamíferos/metabolismoRESUMEN
The pathology of spinocerebellar ataxia type 3, also known as Machado-Joseph disease, is triggered by aggregation of toxic ataxin-3 (ATXN3) variants containing expanded polyglutamine repeats. The physiological role of this deubiquitylase, however, remains largely unclear. Our recent work showed that ATX-3, the nematode orthologue of ATXN3, together with the ubiquitin-directed segregase CDC-48, regulates longevity in Caenorhabditis elegans. Here, we demonstrate that the long-lived cdc-48.1; atx-3 double mutant displays reduced viability under prolonged starvation conditions that can be attributed to the loss of catalytically active ATX-3. Reducing the levels of the autophagy protein BEC-1 sensitized worms to the effect of ATX-3 deficiency, suggesting a role of ATX-3 in autophagy. In support of this conclusion, the depletion of ATXN3 in human cells caused a reduction in autophagosomal degradation of proteins. Surprisingly, reduced degradation in ATXN3-depleted cells coincided with an increase in the number of autophagosomes while levels of lipidated LC3 remained unaffected. We identified two conserved LIR domains in the catalytic Josephin domain of ATXN3 that directly interacted with the autophagy adaptors LC3C and GABARAP in vitro. While ATXN3 localized to early autophagosomes, it was not subject to lysosomal degradation, suggesting a transient regulatory interaction early in the autophagic pathway. We propose that the deubiquitylase ATX-3/ATXN3 stimulates autophagic degradation by preventing superfluous initiation of autophagosomes, thereby promoting an efficient autophagic flux important to survive starvation.
Asunto(s)
Ataxina-3/metabolismo , Caenorhabditis elegans/metabolismo , Enfermedad de Machado-Joseph/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Autofagia , Humanos , Enfermedad de Machado-Joseph/patologíaRESUMEN
Since their initial discovery around two decades ago, the yeast autophagy-related (Atg)8 protein and its mammalian homologues of the light chain 3 (LC3) and γ-aminobutyric acid receptor associated proteins (GABARAP) families have been key for the tremendous expansion of our knowledge about autophagy, a process in which cytoplasmic material become targeted for lysosomal degradation. These proteins are ubiquitin-like proteins that become directly conjugated to a lipid in the autophagy membrane upon induction of autophagy, thus providing a marker of the pathway, allowing studies of autophagosome biogenesis and maturation. Moreover, the ATG8 proteins function to recruit components of the core autophagy machinery as well as cargo for selective degradation. Importantly, comprehensive structural and biochemical in vitro studies of the machinery required for ATG8 protein lipidation, as well as their genetic manipulation in various model organisms, have provided novel insight into the molecular mechanisms and pathophysiological roles of the mATG8 proteins. Recently, it has become evident that the ATG8 proteins and their conjugation machinery are also involved in intracellular pathways and processes not related to autophagy. This review focuses on the molecular functions of ATG8 proteins and their conjugation machinery in autophagy and other pathways, as well as their links to disease.
Asunto(s)
Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , HumanosRESUMEN
The machinery that decorates autophagic membranes with lipid-conjugated LC3/GABARAP is not yet fully understood. We recently reported the purification of the full-length ATG12-ATG5-ATG16L1 complex, and in reconstitution experiments with purified ATG7, ATG3, and LC3/GABARAP in vitro, together with rescue experiments in knockout cells, important aspects of the complete lipidation reaction were revealed. Hitherto unobserved membrane-binding regions in ATG16L1 were found, contributing to properties that explain the crucial role of this protein in membrane targeting and LC3/GABARAP lipidation in macroautophagy/autophagy and other related processes.
Asunto(s)
Autofagia , Animales , Proteínas Relacionadas con la Autofagia , Mamíferos , Proteínas Asociadas a MicrotúbulosRESUMEN
Covalent modification of LC3 and GABARAP proteins to phosphatidylethanolamine in the double-membrane phagophore is a key event in the early phase of macroautophagy, but can also occur on single-membrane structures. In both cases this involves transfer of LC3/GABARAP from ATG3 to phosphatidylethanolamine at the target membrane. Here we have purified the full-length human ATG12-5-ATG16L1 complex and show its essential role in LC3B/GABARAP lipidation in vitro. We have identified two functionally distinct membrane-binding regions in ATG16L1. An N-terminal membrane-binding amphipathic helix is required for LC3B lipidation under all conditions tested. By contrast, the C-terminal membrane-binding region is dispensable for canonical autophagy but essential for VPS34-independent LC3B lipidation at perturbed endosomes. We further show that the ATG16L1 C-terminus can compensate for WIPI2 depletion to sustain lipidation during starvation. This C-terminal membrane-binding region is present only in the ß-isoform of ATG16L1, showing that ATG16L1 isoforms mechanistically distinguish between different LC3B lipidation mechanisms under different cellular conditions.
Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Membrana Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Relacionadas con la Autofagia/genética , Sitios de Unión/genética , Endosomas/metabolismo , Células HEK293 , Humanos , Lípidos de la Membrana/metabolismo , Ratones , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células RAW 264.7 , Homología de Secuencia de AminoácidoRESUMEN
During macroautophagy/autophagy, mammalian Atg8-family proteins undergo 2 proteolytic processing events. The first exposes a COOH-terminal glycine used in the conjugation of these proteins to lipids on the phagophore, the precursor to the autophagosome, whereas the second releases the lipid. The ATG4 family of proteases drives both cleavages, but how ATG4 proteins distinguish between soluble and lipid-anchored Atg8 proteins is not well understood. In a fully reconstituted delipidation assay, we establish that the physical anchoring of mammalian Atg8-family proteins in the membrane dramatically shifts the way ATG4 proteases recognize these substrates. Thus, while ATG4B is orders of magnitude faster at processing a soluble unprimed protein, all 4 ATG4 proteases can be activated to similar enzymatic activities on lipid-attached substrates. The recognition of lipidated but not soluble substrates is sensitive to a COOH-terminal LIR motif both in vitro and in cells. We suggest a model whereby ATG4B drives very fast priming of mammalian Atg8 proteins, whereas delipidation is inherently slow and regulated by all ATG4 homologs.
Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Cisteína Endopeptidasas/metabolismo , Lípidos/química , Mamíferos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Solubilidad , Electricidad Estática , Especificidad por SustratoRESUMEN
Phosphoinositides represent a very small fraction of membrane phospholipids, having fast turnover rates and unique subcellular distributions, which make them perfect for initiating local temporal effects. Seven different phosphoinositide species are generated through reversible phosphorylation of the inositol ring of phosphatidylinositol (PtdIns). The negative charge generated by the phosphates provides specificity for interaction with various protein domains that commonly contain a cluster of basic residues. Examples of domains that bind phosphoinositides include PH domains, WD40 repeats, PX domains, and FYVE domains. Such domains often display specificity toward a certain species or subset of phosphoinositides. Here we will review the current literature of different phosphoinositide-binding proteins involved in autophagy.
Asunto(s)
Autofagia/genética , Fosfatidilinositoles/metabolismo , Unión Proteica/genética , Proteínas/metabolismo , Sitios de Unión , Fosfatidilinositoles/genética , Fosforilación , Dominios Proteicos/genética , Proteínas/genética , Secuencias Repetitivas de Aminoácido/genéticaRESUMEN
A fundamental question is how autophagosome formation is regulated. Here we show that the PX domain protein HS1BP3 is a negative regulator of autophagosome formation. HS1BP3 depletion increased the formation of LC3-positive autophagosomes and degradation of cargo both in human cell culture and in zebrafish. HS1BP3 is localized to ATG16L1- and ATG9-positive autophagosome precursors and we show that HS1BP3 binds phosphatidic acid (PA) through its PX domain. Furthermore, we find the total PA content of cells to be significantly upregulated in the absence of HS1BP3, as a result of increased activity of the PA-producing enzyme phospholipase D (PLD) and increased localization of PLD1 to ATG16L1-positive membranes. We propose that HS1BP3 regulates autophagy by modulating the PA content of the ATG16L1-positive autophagosome precursor membranes through PLD1 activity and localization. Our findings provide key insights into how autophagosome formation is regulated by a novel negative-feedback mechanism on membrane lipids.
Asunto(s)
Autofagia/fisiología , Proteínas del Tejido Nervioso/metabolismo , Ácidos Fosfatidicos/metabolismo , Animales , Animales Modificados Genéticamente , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Cortactina/metabolismo , Células HEK293 , Células HeLa , Humanos , Lípidos de la Membrana/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/química , Fosfolipasa D/metabolismo , Dominios Proteicos , Pez Cebra , Proteínas de Pez Cebra/metabolismoRESUMEN
Upon completion of cytokinesis, the midbody ring is transported asymmetrically into one of the two daughter cells where it becomes a midbody ring derivative that is degraded by autophagy. In this study we showed that the ubiquitin-binding autophagy receptor SQSTM1/p62 and the interacting adaptor protein WDFY3/ALFY form a complex with the ubiquitin E3 ligase TRAF6 and that these proteins, as well as NBR1, are important for efficient clearance of midbody ring derivatives by autophagy. The number of ubiquitinated midbody ring derivatives decreases in TRAF6-depleted cells and we showed that TRAF6 mediates ubiquitination of the midbody ring localized protein KIF23/MKLP1. We conclude that TRAF6-mediated ubiquitination of the midbody ring is important for its subsequent recognition by ubiquitin-binding autophagy receptors and degradation by selective autophagy.