Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 20(10): 2075-2080, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35225309

RESUMEN

Examination of a series of naturally-occurring trypsin inhibitor proteins, led to identification of a set of three residues (which we call the "interface triplet") to be determinant of trypsin binding affinity, hence excellent templates for small molecule mimicry. Consequently, we attempted to use the Exploring Key Orientation (EKO) strategy developed in our lab to evaluate small molecules that mimic the interface triplet regions of natural trypsin inhibitors, and hence potentially might bind and inhibit the catalytic activity of trypsin. A bis-triazole scaffold ("TT-mer") was the most promising of the molecules evaluated in silico. Twelve such compounds were synthesized and assayed against trypsin, among which the best showed a Kd of 2.1 µM. X-ray crystallography revealed a high degree of matching between an illustrative TT-mer's actual binding mode and that of the mimics that overlaid the interface triplet in the crystal structure. Deviation of the third side chain from the PPI structure seems to be due to alleviation of an unfavorable dipole-dipole interaction in the small molecule's actual bound conformation.


Asunto(s)
Inhibidores de Tripsina
2.
Org Biomol Chem ; 17(4): 908-915, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30629068

RESUMEN

Small molecules that can interrupt or inhibit protein-protein interactions (PPIs) are valuable as probes in chemical biology and medicinal chemistry, but they are also notoriously difficult to develop. Design of non-peptidic small molecules that mimic amino acid side-chain interactions in PPIs ("minimalist mimics") is seen as a way to fast track discovery of PPI inhibitors. However, there has been little comment on general design criteria for minimalist mimics, even though such guidelines could steer construction of libraries to screen against multiple PPI targets. We hypothesized insight into general design criteria for minimalist mimics could be gained by comparing preferred conformations of typical minimalist mimic designs against side-chain orientations on a huge number of PPI interfaces. That thought led to this work which features nine minimalist mimic designs: one from the literature, and eight new "hypothetical" ones conceived by us. Simulated preferred conformers of these were systematically aligned with >240 000 PPI interfaces from the Protein Data Bank. Conclusions from those analyses did indeed reveal various design considerations that are discussed here. Surprisingly, this study also showed one of the minimalist mimic designs aligned on PPI interface segments more than 15 times more frequently than any other in the series (according to uniform standards described herein); reasons for this are also discussed.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Bases de Datos de Proteínas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Estereoisomerismo
3.
Org Biomol Chem ; 17(12): 3267-3274, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30847453

RESUMEN

An active segment of the research community designing small molecules ("minimalist mimics" of peptide fragments) to interfere with protein-protein interactions have based their studies on an implicit hypothesis. Here we refer to this as the Secondary Structure Hypothesis, that might be defined as, "If a small molecule can orient amino acid side-chains in directions that resemble side-chains of the parent secondary structure at the interface, then that small molecule is a candidate to perturb the protein-protein interaction". Rigorous tests of this hypothesis require co-crystallization of minimalist mimics with protein receptors, and comparison of the bound conformations with the interface secondary structures they were designed to resemble. Unfortunately, to the best of our knowledge, there is no such analysis in the literature, and it is unlikely that enough examples will emerge in the near future to test the hypothesis. Research described here was designed to challenge this hypothesis from a different perspective. In a previous study, preferred conformations of a series of novel minimalist mimics were simulated then systematically overlaid on >240 000 crystallographically characterized protein-protein interfaces. Select data from that overlay procedure revealed chemotypes that overlay side chains on various PPI interfaces with a relatively high frequency of occurrence. The first aim of this work was to determine if good secondary structure mimics overlay frequently on PPI interfaces. The second aim of this work was to determine if overlays of preferred conformers at interface regions involve secondary structures. Thus situations where these conformations overlaid extremely well on PPI interfaces were analyzed to determine if secondary structures featured the PPI regions where these molecules overlaid in the previous study. Combining conclusions from these two studies enabled us to formulate a hypothesis that is complementary to the Secondary Structure Hypothesis, but, unlike this, is supported by abundant data. We call this the Interface Mimicry Hypothesis.


Asunto(s)
Modelos Químicos , Imitación Molecular , Proteínas/química , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA