Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.702
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(9): 1645-1662.e7, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35882236

RESUMEN

Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1ß and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.


Asunto(s)
Infecciones Bacterianas , Neutrófilos , Receptores Acoplados a Proteínas G , Animales , Ratones , Antibacterianos , Proteínas Portadoras , Defensinas/genética , Disbiosis , Queratinocitos , Receptores Acoplados a Proteínas G/metabolismo , Staphylococcus aureus
2.
Cell ; 159(5): 1212-1226, 2014 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-25416956

RESUMEN

Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand genotype-phenotype relationships. Here, we describe a systematic map of ?14,000 high-quality human binary protein-protein interactions. At equal quality, this map is ?30% larger than what is available from small-scale studies published in the literature in the last few decades. While currently available information is highly biased and only covers a relatively small portion of the proteome, our systematic map appears strikingly more homogeneous, revealing a "broader" human interactome network than currently appreciated. The map also uncovers significant interconnectivity between known and candidate cancer gene products, providing unbiased evidence for an expanded functional cancer landscape, while demonstrating how high-quality interactome models will help "connect the dots" of the genomic revolution.


Asunto(s)
Mapas de Interacción de Proteínas , Proteoma/metabolismo , Animales , Bases de Datos de Proteínas , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Neoplasias/metabolismo
3.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34358447

RESUMEN

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Asunto(s)
Factores Reguladores del Interferón/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Factores Reguladores del Interferón/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Proto-Oncogenes Mas , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Proteínas Supresoras de Tumor/genética
4.
Mol Cell ; 73(5): 1056-1065.e7, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30738704

RESUMEN

The mitochondrial inner membrane harbors a large number of metabolite carriers. The precursors of carrier proteins are synthesized in the cytosol and imported into mitochondria by the translocase of the outer membrane (TOM) and the carrier translocase of the inner membrane (TIM22). Molecular chaperones in the cytosol and intermembrane space bind to the hydrophobic precursors to prevent their aggregation. We report that the major metabolite channel of the outer membrane, termed porin or voltage-dependent anion channel (VDAC), promotes efficient import of carrier precursors. Porin interacts with carrier precursors arriving in the intermembrane space and recruits TIM22 complexes, thus ensuring an efficient transfer of the precursors to the inner membrane translocase. Porin channel mutants impaired in metabolite transport are not disturbed in carrier import into mitochondria. We conclude that porin serves distinct functions as outer membrane channel for metabolites and as coupling factor for protein translocation into the inner membrane.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Porinas/genética , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Nat Chem Biol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773330

RESUMEN

The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.

6.
PLoS Biol ; 21(6): e3002151, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310918

RESUMEN

The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.


Asunto(s)
COVID-19 , Mpox , Infección por el Virus Zika , Virus Zika , Humanos , COVID-19/epidemiología , Pandemias , SARS-CoV-2/genética , Genómica
7.
Nature ; 587(7834): 477-482, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116311

RESUMEN

Myeloid malignancies, including acute myeloid leukaemia (AML), arise from the expansion of haematopoietic stem and progenitor cells that acquire somatic mutations. Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukaemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later1-3. Although bulk sequencing can provide information about leukaemia biology and prognosis, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or definitively elucidate the order of mutations. To delineate the clonal framework of myeloid malignancies, we performed single-cell mutational profiling on 146 samples from 123 patients. Here we show that AML is dominated by a small number of clones, which frequently harbour co-occurring mutations in epigenetic regulators. Conversely, mutations in signalling genes often occur more than once in distinct subclones, consistent with increasing clonal diversity. We mapped clonal trajectories for each sample and uncovered combinations of mutations that synergized to promote clonal expansion and dominance. Finally, we combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our findings provide insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression.


Asunto(s)
Células Clonales/patología , Análisis Mutacional de ADN , Mutación , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Análisis de la Célula Individual , Separación Celular , Células Clonales/metabolismo , Humanos , Inmunofenotipificación
8.
J Biol Chem ; 300(7): 107407, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796065

RESUMEN

Members of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/ß-catenin pathway, which promotes the degradation of ß-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function. In this study, we show that the deletion of CK1α, but not CK1α-like, resulted in a strong activation of the Wnt/ß-catenin pathway. Wnt-3a treatment further enhanced the activation, which suggests there are at least two modes, a CK1α-dependent and Wnt-dependent, of ß-catenin regulation. Rescue experiments showed that only two out of ten naturally occurring splice CK1α/α-like variants were able to rescue the augmented Wnt/ß-catenin signaling caused by CK1α deficiency in cells. Importantly, the ability to phosphorylate ß-catenin on Ser45 in the in vitro kinase assay was required but not sufficient for such rescue. Our compound CK1α and GSK3α/ß KO models suggest that the additional nonredundant function of CK1α in the Wnt pathway beyond Ser45-ß-catenin phosphorylation includes Axin phosphorylation. Finally, we established NanoBRET assays for the three most common CK1α splice variants as well as CK1α-like. Target engagement data revealed comparable potency of known CK1α inhibitors for all CK1α variants but not for CK1α-like. In summary, our work brings important novel insights into the biology of CK1α, including evidence for the lack of redundancy with other CK1 kinases in the negative regulation of the Wnt/ß-catenin pathway at the level of ß-catenin and Axin.


Asunto(s)
Caseína Quinasa Ialfa , Vía de Señalización Wnt , beta Catenina , Humanos , Empalme Alternativo , beta Catenina/metabolismo , beta Catenina/genética , Caseína Quinasa Ialfa/metabolismo , Caseína Quinasa Ialfa/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Células HEK293 , Fosforilación , Proteína Wnt3A/metabolismo , Proteína Wnt3A/genética
9.
Circulation ; 150(4): 272-282, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38841854

RESUMEN

BACKGROUND: A hypothetical concern has been raised that sacubitril/valsartan might cause cognitive impairment because neprilysin is one of several enzymes degrading amyloid-ß peptides in the brain, some of which are neurotoxic and linked to Alzheimer-type dementia. To address this, we examined the effect of sacubitril/valsartan compared with valsartan on cognitive function in patients with heart failure with preserved ejection fraction in a prespecified substudy of PARAGON-HF (Prospective Comparison of Angiotensin Receptor Neprilysin Inhibitor With Angiotensin Receptor Blocker Global Outcomes in Heart Failure With Preserved Ejection Fraction). METHODS: In PARAGON-HF, serial assessment of cognitive function was conducted in a subset of patients with the Mini-Mental State Examination (MMSE; score range, 0-30, with lower scores reflecting worse cognitive function). The prespecified primary analysis of this substudy was the change from baseline in MMSE score at 96 weeks. Other post hoc analyses included cognitive decline (fall in MMSE score of ≥3 points), cognitive impairment (MMSE score <24), or the occurrence of dementia-related adverse events. RESULTS: Among 2895 patients included in the MMSE substudy with baseline MMSE score measured, 1453 patients were assigned to sacubitril/valsartan and 1442 to valsartan. Their mean age was 73 years, and the median follow-up was 32 months. The mean±SD MMSE score at randomization was 27.4±3.0 in the sacubitril/valsartan group, with 10% having an MMSE score <24; the corresponding numbers were nearly identical in the valsartan group. The mean change from baseline to 96 weeks in the sacubitril/valsartan group was -0.05 (SE, 0.07); the corresponding change in the valsartan group was -0.04 (0.07). The mean between-treatment difference at week 96 was -0.01 (95% CI, -0.20 to 0.19; P=0.95). Analyses of a ≥3-point decline in MMSE, decrease to a score <24, dementia-related adverse events, and combinations of these showed no difference between sacubitril/valsartan and valsartan. No difference was found in the subgroup of patients tested for apolipoprotein E ε4 allele genotype. CONCLUSIONS: Patients with heart failure with preserved ejection fraction in PARAGON-HF had relatively low baseline MMSE scores. Cognitive change, measured by MMSE, did not differ between treatment with sacubitril/valsartan and treatment with valsartan in patients with heart failure with preserved ejection fraction. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01920711.


Asunto(s)
Aminobutiratos , Antagonistas de Receptores de Angiotensina , Compuestos de Bifenilo , Cognición , Combinación de Medicamentos , Insuficiencia Cardíaca , Volumen Sistólico , Tetrazoles , Valsartán , Humanos , Compuestos de Bifenilo/uso terapéutico , Valsartán/uso terapéutico , Valsartán/efectos adversos , Aminobutiratos/uso terapéutico , Aminobutiratos/efectos adversos , Masculino , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Femenino , Anciano , Cognición/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Antagonistas de Receptores de Angiotensina/uso terapéutico , Antagonistas de Receptores de Angiotensina/efectos adversos , Persona de Mediana Edad , Tetrazoles/uso terapéutico , Tetrazoles/efectos adversos , Estudios Prospectivos , Neprilisina/antagonistas & inhibidores , Resultado del Tratamiento , Disfunción Cognitiva/tratamiento farmacológico , Anciano de 80 o más Años
10.
Nature ; 571(7764): E5, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31243360

RESUMEN

Change history: In Fig. 1b and c of this Letter, the inset times in the DIC and GFP microscopy images should be in minutes ('min') instead of seconds ('s'). This has not been corrected online.

11.
Nucleic Acids Res ; 51(3): 1034-1049, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36631987

RESUMEN

DNA glycosylase MutY plays a critical role in suppression of mutations resulted from oxidative damage, as highlighted by cancer-association of the human enzyme. MutY requires a highly conserved catalytic Asp residue for excision of adenines misinserted opposite 8-oxo-7,8-dihydroguanine (OG). A nearby Asn residue hydrogen bonds to the catalytic Asp in structures of MutY and its mutation to Ser is an inherited variant in human MUTYH associated with colorectal cancer. We captured structural snapshots of N146S Geobacillus stearothermophilus MutY bound to DNA containing a substrate, a transition state analog and enzyme-catalyzed abasic site products to provide insight into the base excision mechanism of MutY and the role of Asn. Surprisingly, despite the ability of N146S to excise adenine and purine (P) in vitro, albeit at slow rates, N146S-OG:P complex showed a calcium coordinated to the purine base altering its conformation to inhibit hydrolysis. We obtained crystal structures of N146S Gs MutY bound to its abasic site product by removing the calcium from crystals of N146S-OG:P complex to initiate catalysis in crystallo or by crystallization in the absence of calcium. The product structures of N146S feature enzyme-generated ß-anomer abasic sites that support a retaining mechanism for MutY-catalyzed base excision.


Asunto(s)
ADN Glicosilasas , Neoplasias , Humanos , Calcio , Reparación del ADN , Mutación , Purinas , ADN Glicosilasas/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(18): e2117464119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476522

RESUMEN

As northern latitudes experience rapid winter warming, there is an urgent need to assess the effect of varying winter conditions on tree growth and forest carbon sequestration potential. We examined tree growth responses to variability in cold-season (November­April) frequency of freeze days (FFD) over 1951 to 2018 using tree-ring data from 35,217 trees and 57 species at 4,375 sites distributed across Canada. We found that annual radial growth responses to FFD varied by species, with some commonalities across genera and clades. The growth of gymnosperms with late spring leaf-out strategies was negatively related to FFD; years with high FFD were most detrimental to the annual growth of Pinus banksiana, Pinus contorta, Larix lyalli, Abies amabilis, and Abies lasiocarpa. In contrast, the growth of angiosperms with early leaf-out strategies, namely, Populus tremuloides and Betula papyrifera, was better in the coldest years, and gymnosperms with intermediate leaf-out timing, such as widespread Picea mariana and Picea glauca, had no consistent relationship to FFD. Tree growth responses to FFD were further modulated by tree size, tree age, regional climate (i.e., mean cold-season temperature), and local site conditions. Overall, our results suggest that moderately warming winters may temporarily improve the growth of widespread pines and some high-elevation conifers in western Canada, whereas warming winters may be detrimental to the growth of widespread boreal angiosperms. Our findings also highlight the value of using species-specific climate-growth relationships to refine predictions of forest carbon dynamics.


Asunto(s)
Bosques , Árboles , Secuestro de Carbono , Cambio Climático , Estaciones del Año
13.
J Allergy Clin Immunol ; 153(4): 1010-1024.e14, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38092139

RESUMEN

RATIONALE: Serum amyloid A (SAA) is bound to high-density lipoproteins (HDL) in blood. Although SAA is increased in the blood of patients with asthma, it is not known whether this modifies asthma severity. OBJECTIVE: We sought to define the clinical characteristics of patients with asthma who have high SAA levels and assess whether HDL from SAA-high patients with asthma is proinflammatory. METHODS: SAA levels in serum from subjects with and without asthma were quantified by ELISA. HDLs isolated from subjects with asthma and high SAA levels were used to stimulate human monocytes and were intravenously administered to BALB/c mice. RESULTS: An SAA level greater than or equal to 108.8 µg/mL was defined as the threshold to identify 11% of an asthmatic cohort (n = 146) as being SAA-high. SAA-high patients with asthma were characterized by increased serum C-reactive protein, IL-6, and TNF-α; older age; and an increased prevalence of obesity and severe asthma. HDL isolated from SAA-high patients with asthma (SAA-high HDL) had an increased content of SAA as compared with HDL from SAA-low patients with asthma and induced the secretion of IL-6, IL-1ß, and TNF-α from human monocytes via a formyl peptide receptor 2/ATP/P2X purinoceptor 7 axis. Intravenous administration to mice of SAA-high HDL, but not normal HDL, induced systemic inflammation and amplified allergen-induced neutrophilic airway inflammation and goblet cell metaplasia. CONCLUSIONS: SAA-high patients with asthma are characterized by systemic inflammation, older age, and an increased prevalence of obesity and severe asthma. HDL from SAA-high patients with asthma is proinflammatory and, when intravenously administered to mice, induces systemic inflammation, and amplifies allergen-induced neutrophilic airway inflammation. This suggests that systemic inflammation induced by SAA-high HDL may augment disease severity in asthma.


Asunto(s)
Asma , Lipoproteínas HDL , Humanos , Animales , Ratones , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacología , Proteína Amiloide A Sérica/análisis , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Inflamación/metabolismo , Obesidad , Alérgenos
14.
J Neurosci ; 43(18): 3259-3283, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37019622

RESUMEN

Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global network properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from criticality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dysfunction during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity collectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebrafish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality. Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics, impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.SIGNIFICANCE STATEMENT Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish, which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.


Asunto(s)
Epilepsia , Pez Cebra , Animales , Masculino , Femenino , Convulsiones/inducido químicamente , Encéfalo , Neuronas/fisiología , Modelos Neurológicos
15.
J Biol Chem ; 299(3): 102980, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36739951

RESUMEN

Replication of the 30-kilobase genome of SARS-CoV-2, responsible for COVID-19, is a key step in the coronavirus life cycle that requires a set of virally encoded nonstructural proteins such as the highly conserved Nsp13 helicase. However, the features that contribute to catalytic properties of Nsp13 are not well established. Here, we biochemically characterized the purified recombinant SARS-CoV-2 Nsp13 helicase protein, focusing on its catalytic functions, nucleic acid substrate specificity, nucleotide/metal cofactor requirements, and displacement of proteins from RNA molecules proposed to be important for its proofreading role during coronavirus replication. We determined that Nsp13 preferentially interacts with single-stranded DNA compared with single-stranded RNA to unwind a partial duplex helicase substrate. We present evidence for functional cooperativity as a function of Nsp13 concentration, which suggests that oligomerization is important for optimal activity. In addition, under single-turnover conditions, Nsp13 unwound partial duplex RNA substrates of increasing double-stranded regions (16-30 base pairs) with similar efficiency, suggesting the enzyme unwinds processively in this range. We also show Nsp13-catalyzed RNA unwinding is abolished by a site-specific neutralizing linkage in the sugar-phosphate backbone, demonstrating continuity in the helicase-translocating strand is essential for unwinding the partial duplex substrate. Taken together, we demonstrate for the first time that coronavirus helicase Nsp13 disrupts a high-affinity RNA-protein interaction in a unidirectional and ATP-dependent manner. Furthermore, sensitivity of Nsp13 catalytic functions to Mg2+ concentration suggests a regulatory mechanism for ATP hydrolysis, duplex unwinding, and RNA protein remodeling, processes implicated in SARS-CoV-2 replication and proofreading.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , SARS-CoV-2 , Proteínas no Estructurales Virales , Humanos , Adenosina Trifosfato/metabolismo , COVID-19/virología , ARN , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo
16.
J Am Chem Soc ; 146(29): 19828-19838, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39003762

RESUMEN

In recent years, methodologies that rely on water as the reaction medium have gained considerable attention. The unique properties of micellar solutions were shown to improve the regio-, stereo-, and chemoselectivity of different transformations. Herein, we demonstrate that the aqueous environment is a suitable medium for a visible light driven cobalt-catalyzed reaction involving radical species. In this system, reduced vitamin B12 reacts with alkyl halides, generating radicals that are trapped by the lipophilic olefin present in the Stern layer. A series of NMR measurements and theoretical studies revealed the location of reaction components in the micellar system.

17.
Kidney Int ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964736

RESUMEN

The fluorescent compound relmapirazin has been rationally designed for use in point-of-care measurement of glomerular filtration rate (GFR), with attributes including negligible protein binding, negligible metabolites in vivo, negligible tubular secretion, and excellent chemical and photo stability. Twenty-four nonclinical assays were performed in accordance with FDA requirements yielding negligible toxicology concerns. Here, a clinical study was performed to validate relmapirazin as a GFR tracer in patients by comparison to iohexol. This was evaluated in 120 adults at three clinical sites with eGFR values ranging from normal to Stage 4 chronic kidney disease. Relmapirazin and iohexol were administered intravenously in consecutive boluses to each subject and serial blood samples obtained over the subsequent 12 hours. Plasma concentrations were measured and the corresponding plasma GFR for each agent was determined using a standard two-compartment pharmacokinetic assessment. Urine from each subject was collected for the entire 12-hour study period to measure the amount of administered dose appearing in the urine. A near perfect linear regression correlation was observed between the GFRs measured by these two tracers (r2=0.99). Bland-Altman analysis confirmed agreement between these two measures of GFR (limits of agreement -7.0 to +5.6 mL/min; mean of -0.7 mL/min). The GFR determined by relmapirazin was independent of GFR stratification by chronic kidney disease stage, and importantly by race. The percent of the administered relmapirazin dose recovered in the urine was greater than or equal to that of iohexol with no reported severe adverse events. Thus, relmapirazin may be used as a GFR tracer agent in humans.

18.
J Antimicrob Chemother ; 79(3): 656-668, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38323373

RESUMEN

BACKGROUND: WGS is increasingly being applied to healthcare-associated vancomycin-resistant Enterococcus faecium (VREfm) outbreaks. Within-patient diversity could complicate transmission resolution if single colonies are sequenced from identified cases. OBJECTIVES: Determine the impact of within-patient diversity on transmission resolution of VREfm. MATERIALS AND METHODS: Fourteen colonies were collected from VREfm positive rectal screens, single colonies were collected from clinical samples and Illumina WGS was performed. Two isolates were selected for Oxford Nanopore sequencing and hybrid genome assembly to generate lineage-specific reference genomes. Mapping to closely related references was used to identify genetic variations and closely related genomes. A transmission network was inferred for the entire genome set using Phyloscanner. RESULTS AND DISCUSSION: In total, 229 isolates from 11 patients were sequenced. Carriage of two or three sequence types was detected in 27% of patients. Presence of antimicrobial resistance genes and plasmids was variable within genomes from the same patient and sequence type. We identified two dominant sequence types (ST80 and ST1424), with two putative transmission clusters of two patients within ST80, and a single cluster of six patients within ST1424. We found transmission resolution was impaired using fewer than 14 colonies. CONCLUSIONS: Patients can carry multiple sequence types of VREfm, and even within related lineages the presence of mobile genetic elements and antimicrobial resistance genes can vary. VREfm within-patient diversity could be considered in future to aid accurate resolution of transmission networks.


Asunto(s)
Antiinfecciosos , Enterococcus faecium , Humanos , Antibacterianos/farmacología , Enterococcus faecium/genética , Vancomicina , Farmacorresistencia Bacteriana
19.
Clin Chem ; 70(7): 967-977, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38712541

RESUMEN

BACKGROUND: Clinical decision-making for risk stratification for possible myocardial infarction (MI) uses high-sensitivity cardiac troponin (hs-cTn) thresholds that range from the limit of detection to several-fold higher than the upper reference limit (URL). To establish a minimum analytical variation standard, we can quantify the effect of variation on the population clinical measures of safety (sensitivity) and effectiveness [proportion below threshold, or positive predictive value (PPV)]. METHODS: From large datasets of patients investigated for possible MI with the Abbott hs-cTnI and Roche hs-cTnT assays, we synthesized datasets of 1 000 000 simulated patients. Troponin concentrations were randomly varied several times based on absolute deviations of 0.5 to 3 ng/L and relative changes of 2% to 20% around the low-risk threshold (5 ng/L) and URLs, respectively. RESULTS: For both assays at the low-risk thresholds, there were negligible differences in sensitivity (<0.3%) with increasing analytical variation. The proportion of patients characterized as low risk reduced by 30% to 29% (Roche) and 53% to 44% (Abbott). At the URL, increasing analytical variation also did not change sensitivity; the PPV fell by less than 3%. For risk stratification, increased delta thresholds (change between serial troponin concentrations) increased sensitivity at the cost of a decreased percentage of patients below the delta threshold, with the largest changes at the greatest analytical variation. CONCLUSIONS: At the low-risk threshold, analytical variation up to 3 ng/L minimally impacted the safety metric (sensitivity) but marginally reduced effectiveness. Similarly, at the URL even relative variation up to 25% minimally impacted safety metrics and effectiveness. Analytical variation for delta thresholds did not negatively impact sensitivity but decreased effectiveness.


Asunto(s)
Infarto del Miocardio , Troponina I , Troponina T , Humanos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/sangre , Troponina T/sangre , Troponina I/sangre
20.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R588-R598, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682241

RESUMEN

Type 2 diabetes (T2D) is associated with reduced whole body sweating during exercise-heat stress. However, it is unclear if this impairment is related to exercise intensity and whether it occurs uniformly across body regions. We evaluated whole body (direct calorimetry) and local (ventilated-capsule technique; chest, back, forearm, thigh) sweat rates in physically active men with type 2 diabetes [T2D; aged 59 (7) yr; V̇o2peak 32.3 (7.6) mL·kg-1·min-1; n = 26; HbA1c 5.1%-9.1%] and without diabetes [Control; aged 61 (5) yr; V̇o2peak 37.5 (5.4) mL·kg-1·min-1; n = 26] during light- (∼40% V̇o2peak), moderate- (∼50% V̇o2peak), and vigorous- (∼65% V̇o2peak) intensity exercise (elicited by fixing metabolic heat production at ∼150, 200, 250 W·m-2, respectively) in 40°C, ∼17% relative humidity. Whole body sweating was ∼11% (T2D: Control mean difference [95% confidence interval]: -37 [-63, -12] g·m-2·h-1) and ∼13% (-50 [-76, -25] g·m-2·h-1) lower in the T2D compared with the Control group during moderate- and vigorous- (P ≤ 0.001) but not light-intensity exercise (-21 [-47, 4] g·m-2·h-1; P = 0.128). Consequently, the diabetes-related reductions in whole body sweat rate were 2.3 [1.6, 3.1] times greater during vigorous relative to light exercise (P < 0.001). Furthermore, these diabetes-related impairments in local sweating were region-specific during vigorous-intensity exercise (group × region interaction: P = 0.024), such that the diabetes-related reduction in local sweat rate at the trunk (chest, back) was 2.4 [1.2, 3.7] times greater than that at the limbs (thigh, arm). In summary, when assessed under hot, dry conditions, diabetes-related impairments in sweating are exercise intensity-dependent and greater at the trunk compared with the limbs.NEW & NOTEWORTHY This study evaluates the influence of exercise intensity on decrements in whole body sweating associated with type 2 diabetes. Furthermore, it investigates whether diabetes-related sweating impairments were exhibited uniformly or heterogeneously across body regions. We found that whole body sweating was attenuated in the type 2 diabetes group relative to control participants during moderate- and vigorous-intensity exercise but not light-intensity exercise; impairments were largely mediated by reduced sweating at the trunk rather than the limbs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ejercicio Físico , Sudoración , Humanos , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Persona de Mediana Edad , Ejercicio Físico/fisiología , Anciano , Estudios de Casos y Controles , Regulación de la Temperatura Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA