Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36616332

RESUMEN

Transport processes across membranes play central roles in any biological system. They are essential for homeostasis, cell nutrition, and signaling. Fluxes across membranes are governed by fundamental thermodynamic rules and are influenced by electrical potentials and concentration gradients. Transmembrane transport processes have been largely studied on single membranes. However, several important cellular or subcellular structures consist of two closely spaced membranes that form a membrane sandwich. Such a dual membrane structure results in remarkable properties for the transport processes that are not present in isolated membranes. At the core of membrane sandwich properties, a small intermembrane volume is responsible for efficient coupling between the transport systems at the two otherwise independent membranes. Here, we present the physicochemical principles of transport coupling at two adjacent membranes and illustrate this concept with three examples. In the supplementary material, we provide animated PowerPoint presentations that visualize the relationships. They could be used for teaching purposes, as has already been completed successfully at the University of Talca.

2.
Plants (Basel) ; 11(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36559639

RESUMEN

Two-pore channels (TPCs) are members of the superfamily of ligand-gated and voltage-sensitive ion channels in the membranes of intracellular organelles of eukaryotic cells. The evolution of ordinary plant TPC1 essentially followed a very conservative pattern, with no changes in the characteristic structural footprints of these channels, such as the cytosolic and luminal regions involved in Ca2+ sensing. In contrast, the genomes of mosses and liverworts encode also TPC1-like channels with larger variations at these sites (TPC1b channels). In the genome of the model plant Physcomitrium patens we identified nine non-redundant sequences belonging to the TPC1 channel family, two ordinary TPC1-type, and seven TPC1b-type channels. The latter show variations in critical amino acids in their EF-hands essential for Ca2+ sensing. To investigate the impact of these differences between TPC1 and TPC1b channels, we generated structural models of the EF-hands of PpTPC1 and PpTPC1b channels. These models were used in molecular dynamics simulations to determine the frequency with which calcium ions were present in a coordination site and also to estimate the average distance of the ions from the center of this site. Our analyses indicate that the EF-hand domains of PpTPC1b-type channels have a lower capacity to coordinate calcium ions compared with those of common TPC1-like channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA