Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Biol ; 353(3): 517-28, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16185709

RESUMEN

A first component involved in import into the mitochondrial intermembrane space, named Mia40, has been described recently in yeast. Here, we identified the human MIA40 as a novel and ubiquitously expressed component of human mitochondria. It belongs to a novel protein family whose members share six highly conserved cysteine residues constituting a -CXC-CX9C-CX9C- motif. Human MIA40 is significantly smaller than the fungal protein and lacks the N-terminal extension including a transmembrane region and mitochondrial targeting signal. It forms soluble complexes within the intermembrane space of human mitochondria. Depletion of MIA40 in human cells by RNA interference specifically affected steady-state levels of small and cysteine-containing intermembrane space proteins like DDP1 and TIM10A, suggesting that MIA40 acts along the import pathway into the intermembrane space. Studies on the in vivo redox state of human MIA40 demonstrated that it contains intramolecular disulfide bonds. Thiol-trapping assays revealed the co-existence of different oxidation states of human MIA40 within the cell. Furthermore, we show that the twin -CX9C- motif is specifically required for import and stability of MIA40 in mitochondria. Partial mutation of this motif affects stable accumulation of MIA40 in the intermembrane space, whereas mutation of all cysteine residues in this motif inhibits import in mitochondria. Taken together, we conclude that the biogenesis and function of MIA40 in the mitochondrial intermembrane space is dependent on redox processes involving conserved cysteine residues.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Mutación , Secuencia de Aminoácidos , Secuencia de Bases , Cromatografía en Gel , Cartilla de ADN , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Transporte de Proteínas , Homología de Secuencia de Aminoácido
2.
J Biol Chem ; 279(14): 13540-6, 2004 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-14726512

RESUMEN

Tim9, Tim10a, and Tim10b are members of the family of small Tim proteins located in the intermembrane space of mammalian mitochondria. In yeast, members of this family act along the TIM22 import pathway during import of metabolite carriers and other integral inner membrane proteins. Here, we show that the human small proteins form two distinct hetero-oligomeric complexes. A 70-kDa complex that contains Tim9 and Tim10a and a Tim9-10a-10b that is part of a higher molecular weight assembly of 450 kDa. This distribution among two complexes suggests Tim10b to be the functional homologue of yeast Tim12. Both human complexes are tightly associated with the inner membrane and, compared with yeast, soluble 70-kDa complexes appear to be completely absent in the intermembrane space. Thus, the function of soluble 70-kDa complexes as trans-site receptors for incoming carrier proteins is not conserved from lower to higher eukaryotes. During import, the small Tim complexes directly interact with human adenine nucleotide translocator (ANT) in transit in a metal-dependent manner. For insertion of carrier preproteins into the inner membrane, the human small Tim proteins directly interact with human Tim22, the putative insertion pore of the TIM22 translocase. However, in contrast to yeast, only a small fraction of Tim9-Tim10a-Tim10b complex is in a stable association with Tim22. We conclude that different mechanisms and specific requirements for import and insertion of mammalian carrier preproteins have evolved in higher eukaryotes.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Transporte Biológico , Evolución Molecular , Células HeLa , Humanos , Mamíferos , Ratones , Levaduras/metabolismo
3.
J Biol Chem ; 277(26): 23287-93, 2002 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-11956200

RESUMEN

Mohr-Tranebjaerg syndrome is a progressive, neurodegenerative disorder caused by loss-of-function mutations in the DDP1/TIMM8A gene. DDP1 belongs to a family of evolutionary conserved proteins that are organized in hetero-oligomeric complexes in the mitochondrial intermembrane space. They mediate the import and insertion of hydrophobic membrane proteins into the mitochondrial inner membrane. All of them share a conserved Cys(4) metal binding site proposed to be required for the formation of zinc fingers. So far, the only missense mutation known to cause a full-blown clinical phenotype is a C66W exchange directly affecting this Cys(4) motif. Here, we show that the mutant human protein is efficiently imported into mitochondria and sorted into the intermembrane space. In contrast to wild-type DDP1, it does not complement the function of its yeast homologue Tim8. The C66W mutation impairs binding of Zn(2+) ions via the Cys(4) motif. As a consequence, the mutated DDP1 is incorrectly folded and loses its ability to assemble into a hetero-hexameric 70-kDa complex with its cognate partner protein human Tim13. Thus, an assembly defect of DDP1 is the molecular basis of Mohr-Tranebjaerg syndrome in patients carrying the C66W mutation.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Transporte de Membrana , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae , Secuencias de Aminoácidos , Animales , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Pliegue de Proteína , Proteínas/química , Proteínas/genética , Conejos , Zinc/metabolismo , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA