Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell Biochem Funct ; 35(7): 414-419, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28990218

RESUMEN

Reversing the function of cancer-associated fibroblasts (CAFs) may improve the efficacy of cancer therapy. Here, we isolated a novel polysaccharide from Dictyophora indusiata (ZSP4) and examined its effects on the function of prostate CAFs. The supernatant of prostate CAFs can stimulate the proliferation of immune cells and inhibit the growth of CD4+/CD8+ T cells. However, after ZSP4 stimulation, the functions of prostate CAFs were inhibited. The mechanism experiment shows that ZSP4 can stimulate prostate CAFs by down-regulating the expression of α-smooth muscle actin. Polysaccharides extracted from Dictyophora indusiata stimulate the proliferation of immune cells and reverse the immune-suppressive functions of prostate CAFs, shedding new light on the development of novel anticancer strategies. The endocrine therapy used to treat prostate cancer aims to eliminate androgenic activity from prostatic tissue; these therapies are painful and of poor therapeutic effect. In this study, we found that polysaccharides extracted from Dictyophora indusiata may affect the micro-environment of tumours and inhibit the growth of the tumours. Our results suggest that polysaccharides may modulate negative immune regulation and enhance antitumour immunity, which is important for clinical therapy.


Asunto(s)
Basidiomycota/metabolismo , Proliferación Celular/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Inmunosupresores/farmacología , Actinas/metabolismo , Animales , Fibroblastos Asociados al Cáncer/citología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Bazo/citología , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
2.
Faraday Discuss ; 193: 51-64, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27711896

RESUMEN

Electrochemical reactions at nanoscale structures possess unique characteristics, e.g. fast mass transport, high signal-to-noise ratio at low concentration, and insignificant ohmic losses even at low electrolyte concentrations. These properties motivate the fabrication of high density, laterally ordered arrays of nanopores, embedding vertically stacked metal-insulator-metal electrode structures and exhibiting precisely controlled pore size and interpore spacing for use in redox cycling. These nanoscale recessed ring-disk electrode (RRDE) arrays exhibit current amplification factors, AFRC, as large as 55-fold with Ru(NH3)62/3+, indicative of capture efficiencies at the top and bottom electrodes, Φt,b, exceeding 99%. Finite element simulations performed to investigate the concentration distribution of redox species and to assess operating characteristics are in excellent agreement with experiment. AFRC increases as the pore diameter, at constant pore spacing, increases in the range 200-500 nm and as the pore spacing, at constant pore diameter, decreases in the range 1000-460 nm. Optimized nanoscale RRDE arrays exhibit a linear current response with concentration ranging from 0.1 µM to 10 mM and a small capacitive current with scan rate up to 100 V s-1. At the lowest concentrations, the average pore occupancy is 〈n〉 ∼ 0.13 molecule establishing productive electrochemical signals at occupancies at and below the single molecule level in these nanoscale RRDE arrays.

3.
Analyst ; 141(21): 6018-6024, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27704078

RESUMEN

Bipolar electrodes (BPE) are electrically floating metallic elements placed in electrified fluids that enable the coupling of anodic and cathodic redox reactions at the opposite ends by electron transfer through the electrode. One particularly compelling application allows electron transfer reactions at one end of a closed BPE to be read out optically by inducing a redox-initiated change in the optical response function of a reporter system at the other end. Here, a BPE-enabled method for electrochemical sensing based on the electrochromic response of a methyl viologen (MV) reporter is developed, characterized, and rendered in a field-deployable format. BPE-enabled devices based on two thin-layer-cells of ITO and Pt were fabricated to couple an analytical reaction in one cell with an MV reporter reaction, producing a color change in the complementary cell. Using Fe(CN)63/4- as a model analyte, the electrochemically induced color change of MV was determined initially by measuring its absorbance via a CCD camera coupled to a microscope. Then, smartphone-based detection and RGB analysis were employed to further simplify the sensing scheme. Both methods produced a linear relationship between the analyte concentration, the quantity of MV generated, and the colorimetric response, yielding a limit of detection of 1.0 µM. Similar responses were observed in the detection of dopamine and acetaminophen. Further evolution of the device replaced the potentiostat with batteries to control potential, demonstrating the simplicity and portability of the device. Finally, the physical separation of the reporter and analytical cells renders the device competent to detect analytes in different (e.g. non-aqueous) phases, as demonstrated by using the electrochromic behavior of aqueous MV to detect ferrocene in acetonitrile in the analytical cell.

4.
J Am Chem Soc ; 136(20): 7225-8, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24805994

RESUMEN

In canonical electrochemical experiments, a high-concentration background electrolyte is used, carrying the vast majority of current between macroscopic electrodes, thus minimizing the contribution of electromigration transport of the redox-active species being studied. In contrast, here large current enhancements are achieved in the absence of supporting electrolyte during cyclic voltammetry at a recessed ring-disk nanoelectrode array (RRDE) by taking advantage of the redox cycling effect in combination with ion enrichment and an unshielded ion migration contribution to mass transport. Three distinct transport regimes are observed for the limiting current as a function of the concentration of redox species, Ru(NH3)6(2+/3+), revealed through the strong dependence of ion transport on ionic strength. Behavior at low analyte concentrations is especially interesting. In the absence of supporting electrolyte, ions accumulate in the nanopores, resulting in significantly increased current amplification compared to redox cycling in the presence of supporting electrolyte. Current enhancements as large as 100-fold arising from ion enrichment and ion migration effects add to the ~20-fold enhancement due to redox cycling, producing a total current amplification as large as 2000-fold compared to a single microelectrode of the same total area, making these RRDE arrays interesting for electrochemical processing and analysis.

5.
Anal Chem ; 85(20): 9882-8, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24074127

RESUMEN

Arrays of recessed ring-disk (RRD) electrodes with nanoscale spacing fabricated by multilayer deposition, nanosphere lithography, and multistep reactive ion etching were incorporated into nanofluidic channels. These arrays, which characteristically exhibit redox cycling leading to current amplification during cyclic voltammetry, can selectively analyze electroactive species based on differences in redox reversibility, redox potential, or both. Using Ru(NH3)6(3+) and ascorbic acid (AA) as model reversible and irreversible redox species, the selectivity for electrochemical measurement of Ru(NH3)6(3+) against a background of AA improves from ∼10, for an array operated in a fluidically unconstrained geometry, to ∼70 for an array integrated within nanofluidic channels. RRD arrays were also used for the detection of dopamine in the presence of AA by cyclic voltammetry. A linear response ranging from 100 nM to 1 mM with a detection limit of 20 nM was obtained for dopamine alone without nanofluidic confinement. In nanochannel-confined arrays, AA was depleted by holding the ring electrodes at +0.5 V versus Ag/AgCl, allowing interference-free determination of dopamine at the disk electrodes in the presence of a 100-fold excess of AA. For selective detection of electrochemically reversible interfering species on an RRD array without nanochannel confinement, a ring potential can be chosen such that one species exhibits exclusively cathodic (anodic) current, allowing the other species to be determined from its anodic (cathodic) current. This approach for selective detection is demonstrated in a mixture of Ru(NH3)6(3+) and Fe(CN)6(3-), which have resolved redox potentials. The same principle was successfully applied to differentiate species with overlapping redox potentials, such as dopamine/Fe(CN)6(3-) and ferrocenemethanol/Fe(CN)6(4-).


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Nanotecnología/instrumentación , Ácido Ascórbico/química , Dopamina/análisis , Dopamina/química , Electroquímica , Electrodos , Límite de Detección , Rutenio/química
6.
Anal Chem ; 84(21): 9505-12, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23043532

RESUMEN

Control of permeability of phospholipid vesicle (liposome) membranes is critical to their applications in analytical sensing, in fundamental studies of chemistry in small volumes, and in encapsulation and release of payloads for site-directed drug delivery. Applications of liposome formulations in drug delivery often take advantage of the enhanced permeability of phospholipid membranes at their gel-to-fluid phase transition, where the release of encapsulated molecules can be initiated by an increase in temperature. Despite numerous successful liposome formulations for encapsulation and release methods to study the kinetics, this process has been limited to investigations of bulk vesicle dispersions, which provide little or no information about the vesicle membrane structure and its relationship to the kinetics of trans-membrane transport. In this work, confocal Raman microscopy is adapted to study temperature-dependent release of a model compound, 3-nitrobenzene sulfonate (3-NBS), from individual optically trapped phospholipid vesicles, while simultaneously monitoring structural changes in the vesicle membrane reported by vibrational modes of phospholipid acyl chains and the local environment of the encapsulated compound. The confocal geometry allows efficient excitation and collection of Raman scattering from a single vesicle, while optical trapping allows more than hour-long observations of the same vesicle. With window factor analysis to resolve component spectra, temperature-controlled release of 3-NBS through vesicle membranes composed of pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was measured and compared to transport through a lysolipid-containing membrane specifically formulated for efficient drug delivery.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Liposomas/química , Microscopía Confocal/métodos , Pinzas Ópticas , Espectrometría Raman , Temperatura , Bencenosulfonatos/química
7.
Langmuir ; 28(5): 2628-36, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22263602

RESUMEN

Adsorption of 11-mercaptoundecanoic acid (MUA) on silver from methanol and aqueous solutions was monitored in situ by surface-enhanced Raman scattering (SRES) spectroscopy. While adsorption of MUA from methanol is a one-step formation of a thiol-bound monolayer, SERS spectra reveal that monolayer formation from aqueous solution involves interactions of both carboxylate and thiol groups of MUA with the silver surface. Several Raman scattering bands, including the ν(C-S), ν(s)(COO(-)), and ν(C-C), were used to investigate the evolution of the structure of adsorbed MUA on silver surfaces. The time-dependent profiles of these bands for assembly from aqueous solution indicate a multistep process, which is initiated by the binding of both carboxylate and thiol groups to silver, producing a mixture of gauche and trans conformations. In a subsequent step, the COO-Ag interactions are displaced by stronger S-Ag bonds, leading to ordering of the resulting monolayer with formation of a complete SAM with all-trans conformations. The results also showed that the adsorption process depended strongly on the solution pH and surface potential of the metal. These factors can significantly affect the participation and displacement of -COO(-) during self-assembly of MUA from aqueous solution.


Asunto(s)
Alcanos/química , Alcanos/síntesis química , Ácidos Carboxílicos/química , Plata/química , Compuestos de Sulfhidrilo/síntesis química , Adsorción , Cinética , Espectrometría Raman , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
8.
Langmuir ; 27(7): 3527-33, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21366221

RESUMEN

The acid-base chemistry of 2-mercaptobenzoic acid (2-MBA) immobilized on a polycrystalline silver surface was investigated by surface-enhanced Raman spectroscopy under potential control. The COO(-) bending mode of the benzoate form and the C-COOH stretching mode of the benzoic acid form of 2-MBA were used to determine the relative deprotonated and protonated populations of the bound ligand, respectively. In addition, shifts in the symmetric carboxylate stretching mode of 2-MBA reveal interactions between the benzoate group and the silver surface, interactions which could be displaced by acetate and other buffer anions from solution. It was found that the applied potential has a significant effect on the proton dissociation equilibrium of immobilized 2-MBA. This effect arises from the surface potential governing the activity of protons at the interface, which changes the interfacial pH relative to bulk solution. The results are fit to a Poisson-Boltzmann model, corrected for potential distribution across the monolayer and interactions between adjacent immobilized ligands. The results show a significant increase in the intrinsic pK(a) of the immobilized ligand compared to 2-MBA in free solution, which is likely due to an increase in electron density on the benzoic acid group that occurs upon binding of the thiol group to the silver surface.

9.
J Phys Chem C Nanomater Interfaces ; 122(20): 11031-11037, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31073354

RESUMEN

In this work, we in situ monitor the laser annealing of template-fabricated silver substrates using surface-enhanced Raman scattering (SERS) and 4-mercaptobenzoic acid (4-MBA) as a molecular probe. The annealing process, which exhibits a strong dependence on the laser power, yields a large (>50×) increase in the SERS of the immobilized 4-MBA. This increased SERS response is correlated with the changing substrate morphology using optical and scanning electron microscope images. We attribute the large enhancement to the formation of nanogaps facilitated by binding of the 4-MBA through both thiol and COO- groups in a sandwich structure, resulting in both electromagnetic and chemical enhancement. This annealing effect, associated with the continuous increase of SERS intensity, was not limited to the AgNP arrays but included Ag films deposited on a variety of nanoporous templates. This study provides a simple strategy for in situ optimization of plasmonic SERS substrates.

10.
Nanoscale ; 9(16): 5164-5171, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28393950

RESUMEN

Surface charge characteristics and the electrical double layer (EDL) effect govern the transport of ions into and out of nanopores, producing a permselective concentration polarization, which dominates the electrochemical response of nanoelectrodes in solutions of low ionic strength. In this study, highly ordered, zero-dimensional nanopore electrode arrays (NEAs), with each nanopore presenting a pair of recessed electrodes, were fabricated to couple EDL effects with redox cycling, thereby achieving electrochemical detection with improved sensitivity and selectivity. These NEAs exhibit current amplification as high as 55-fold due to the redox cycling effect, which can be further increased by ∼500-fold upon the removal of the supporting electrolyte. The effect of nanopore geometry, which is a key factor determining the magnitude of the EDL effect, is fully characterized, as is the effect of the magnitude and sign of the charge of the redox-active species. The observed changes in limiting current with the concentration of the supporting electrolyte confirm the accumulation of cations and repulsion of anions in NEAs presenting negative surface charge. Exploiting this principle, dopamine was selectively determined in the presence of a 3000-fold excess of ascorbic acid within the NEA.

11.
ACS Appl Mater Interfaces ; 8(36): 23978-84, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27551811

RESUMEN

Nanoporous metal films are promising substrates for surfaced-enhanced Raman scattering (SERS) measurement, owing to their homogeneity, large surface area, and abundant hot-spots. Herein, a facile procedure was developed to fabricate nanoporous Ag film on various substrate surfaces. Thermally deposited Ag film was first treated with O2 plasma, resulting in porous Ag/AgxO film (AgxO-NF) with nanoscale feature. Sodium citrate was then used to reduce AgxO to Ag, forming nanoporous Ag film (AgNF) with similar morphology. The AgNF substrate demonstrates 30-fold higher Raman intensity than Ag film over polystyrene nanospheres (d = 600 nm) using 4-mercaptobenzoic acid (4-MBA) as the sensing molecule. Comparing with ordinary Raman measurement on 4-MBA solution, an enhancement factor of ∼6 × 10(6) was determined for AgNF. The AgNF substrate was evaluated for benzoic acid, 4-nitrophenol, and 2-mercaptoethanesulfonate, showing high SERS sensitivity for chemicals that bind weakly to Ag surface and molecules with relatively small Raman cross section at micromolar concentration. In addition to its simplicity, the procedure can be applied to various materials such as transparency film, filter paper, hard polystyrene film, and aluminum foil, revealing similar Raman sensitivity. By testing the durability of the substrate, we found that the AgxO films can be stored in ambient conditions for more than 90 days and still deliver the same SERS intensity if the films are treated with sodium citrate before use. These results demonstrate the advantage of the proposed approach for mass production of low-cost, sensitive, and durable SERS substrates. The transferable nature of these AgNF to different flexible surfaces also allows their easy integration with other sensing schemes.

12.
ACS Nano ; 10(3): 3658-64, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26910572

RESUMEN

Ion permselectivity can lead to accumulation in zero-dimensional nanopores, producing a significant increase in ion concentration, an effect which may be combined with unscreened ion migration to improve sensitivity in electrochemical measurements, as demonstrated by the enormous current amplification (∼2000-fold) previously observed in nanopore electrode arrays (NEA) in the absence of supporting electrolyte. Ionic strength is a key experimental factor that governs the magnitude of the additional current amplification (AFad) beyond simple redox cycling through both ion accumulation and ion migration effects. Separate contributions from ion accumulation and ion migration to the overall AFad were identified by studying NEAs with varying geometries, with larger AFad values being achieved in NEAs with smaller pores. In addition, larger AFad values were observed for Ru(NH3)6(3/2+) than for ferrocenium/ferrocene (Fc(+)/Fc) in aqueous solution, indicating that coupling efficiency in redox cycling can significantly affect AFad. While charged species are required to observe migration effects or ion accumulation, poising the top electrode at an oxidizing potential converts neutral species to cations, which can then exhibit current amplification similar to starting with the cation. The electrical double layer effect was also demonstrated for Fc/Fc(+) in acetonitrile and 1,2-dichloroethane, producing AFad up to 100× at low ionic strength. The pronounced AFad effects demonstrate the advantage of coupling redox cycling with ion accumulation and migration effects for ultrasensitive electrochemical measurements.

13.
Asian Pac J Cancer Prev ; 17(8): 3829-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27644624

RESUMEN

Inhibition of cancer-associated broblasts (CAFs) may improve the efficacy of cancer therapy. Polysaccharide extracted from polygonatum can selectively inhibit the growth of prostate-CAFs (<.001) without inhibiting the growth of normal broblasts (NAFs). Polysaccharides from polygonatum stimulate autophagy of prostate-CAFs. 3-methyl-adenine(3-MA) is an autophagy inhibitor. 3-MA was added to prostate-CAFs with polysaccharide from polygonatum to determine whether autophagy plays an important role in the restrained effect. Finally, polysaccharide from polygonatum treatment significantly increased the activation of Beclin-1 and LC3, key autophagy proteins. Polysaccharides from polygonatum stimulate autophagy of prostate-CAFs and inhibits prostate-CAF growth, indicating that a novel anti-cancer strategy involves inhibiting the growth of prostate- CAFs.


Asunto(s)
Fibroblastos Asociados al Cáncer/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Polygonatum/química , Polisacáridos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Extractos Vegetales/farmacología , Próstata/efectos de los fármacos , Neoplasias de la Próstata/metabolismo
14.
Chem Sci ; 6(5): 3173-3179, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28706689

RESUMEN

We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ∼30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy)32/3+/tri-n-propylamine on the floating bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH3)63+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high sensitivity fluorescence-mediated electrochemical sensing coupled to self-induced redox cycling.

15.
Microfluid Nanofluidics ; 19(5): 1181-1189, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30319319

RESUMEN

In situ generation of reagents and their subsequent use downstream presents new opportunities to amplify the utility of nanofluidic devices by exploiting the confined geometry to address mass transport limitations on reaction kinetics and efficiency. Oxygen, an inherently valuable reactant, can be produced from electrolysis of water, a process that can be conveniently integrated within a nanofluidic system. Here, we construct and characterize a nanofluidic device consisting of a planar microband electrode embedded within a nanochannel for in situ electrochemical generation and optical monitoring of O2. Fluorescein, a dye with a pH-sensitive emission intensity, was used to monitor the spatiotemporal characteristics of the oxidation of H2O, using the co-produced H+. Application of anodic potentials at the nanochannel-embedded electrode results in a decrease in fluorescence intensity, which reflects the decreasing solution pH. A combination of fluorescence intensity and chronoamperometric response was used to quantitatively determine proton generation, and the H+/O2 stoichiometry was then used to determine the concentration of the O2 in the channel. Comparison of the experimental results to finite element simulations validates the use of fluorescein emission intensity to spectroscopically determine the local oxygen concentration in the nanochannel. By varying the applied potential, spatially averaged O2 concentrations ranging from 0.13 to 0.41 mM were generated. The results demonstrate a convenient route to in situ modulation of the dissolved O2 level in a nanofluidic device and the use of an optical probe to monitor its spatial and temporal distribution under flow conditions.

16.
Appl Spectrosc ; 67(7): 801-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23816133

RESUMEN

Chemical modification of the surfaces of surface-enhanced Raman spectroscopy (SERS)-active metals with thin molecular layers expands the variety of molecular species that can be attracted to the SERS surface from solution. This approach can provide selective detection of new classes of molecules that would not otherwise be detectable through direct interaction with a SERS-active metal. For example, polycyclic aromatic compounds can be attracted from aqueous solution to gold or silver SERS substrates that are modified with alkylsilanes or alkanethiols. While n-alkane monolayers attract hydrophobic solutes to a SERS-active surface, they are not well suited to adsorbing more water-soluble, ionized species from solution. In this work, we address SERS detection of ionic solutes by applying the principles of ion-interaction chromatography, where a charged surfactant is added to solution and adsorbs to an n-alkane-modified, SERS-active surface. The adsorbed charged surfactant serves to attract an ionic solute of opposite charge to the surface, where it can be detected. This concept was tested with a model anionic solute, 3-nitrobenzenesulfonate (NBS(-)), with a cationic surfactant, cetylpyridinium (CP(+)), that adsorbs to a 1-dodecanethiol (C12)-modified silver surface. The interfacial populations of both the surfactant and anionic solute can be determined simultaneously from SERS spectra. The adsorption equilibrium of CP(+) to the C12 surface was fit to a Langmuir model, and the effect of supporting electrolyte on its adsorption equilibria was also investigated by SERS. The retention of NBS(-) at the C12 surface depends on the concentration of CP(+). The binding of NBS(-) to adsorbed CP(+) is described by an ion-interaction model that includes competition for the NBS(-) population due to association with surfactant ions in solution. While the strength of this binding interaction is not as great as the hydrophobic interactions that drive aromatic hydrocarbons to hydrophobic SERS surfaces, SERS detection of analyte ions by this approach could be accomplished at concentrations two orders of magnitude lower compared with Raman detection in free solution.

17.
ACS Nano ; 7(6): 5483-90, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23691968

RESUMEN

An array of nanoscale-recessed ring-disk electrodes was fabricated using layer-by-layer deposition, nanosphere lithography, and a multistep reactive ion etching process. The resulting device was operated in generator-collector mode by holding the ring electrodes at a constant potential and performing cyclic voltammetry by sweeping the disk potential in Fe(CN)6(3-/4-) solutions. Steady-state response and enhanced (~10×) limiting current were achieved by cycling the redox couple between ring and disk electrodes with high transfer/collection efficiency. The collector (ring) electrode, which is held at a constant potential, exhibits a much smaller charging current than the generator (disk), and it is relatively insensitive to scan rate. A characteristic feature of the nanoscale ring-disk geometry is that the electrochemical reaction occurring at the disk electrodes can be tuned by modulating the potential at the ring electrodes. Measured shifts in Fe(CN)6(3-/4-) concentration profiles were found to be in excellent agreement with finite element method simulations. The main performance metric, the amplification factor, was optimized for arrays containing small diameter pores (r < 250 nm) with minimum electrode spacing and high pore density. Finally, integration of the fabricated array within a nanochannel produced up to 50-fold current amplification as well as enhanced selectivity, demonstrating the compatibility of the device with lab-on-a-chip architectures.


Asunto(s)
Nanotecnología/instrumentación , Impedancia Eléctrica , Electroquímica , Electrodos , Oxidación-Reducción
18.
J Chem Inf Comput Sci ; 44(3): 907-11, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15154756

RESUMEN

A novel method based on continuous wavelet transform (CWT) was proposed as a preprocessing tool for the near-infrared (NIR) spectra. Due to the property of the vanishing moments of the wavelet, the fluctuating background of the NIR spectra can be successfully removed through convolution of the spectra with an appropriate wavelet function. The vanishing moments of a wavelet and the scale parameter are two key factors that govern the result of the background elimination. The result of its application to both the simulated spectra and the NIR spectra of tobacco samples demonstrates that CWT is a competitive tool for removing fluctuating background in spectra.

19.
Anal Bioanal Chem ; 379(4): 714-9, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15164155

RESUMEN

An improved method is proposed for the quantitative determination of multicomponent overlapping chromatograms based on a known transmutation method. To overcome the main limitation of the transmutation method caused by the oscillation generated in the transmutation process, two techniques--wavelet transform smoothing and the cubic spline interpolation for reducing data points--were adopted, and a new criterion was also developed. By using the proposed algorithm, the oscillation can be suppressed effectively, and quantitative determination of the components in both the simulated and experimental overlapping chromatograms is successfully obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA