Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biol Cell ; 115(12): e202300057, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37851997

RESUMEN

BACKGROUND INFORMATION: Persistent myelin debris can inhibit axonal regeneration, thereby hindering remyelination. Effective removal of myelin debris is essential to eliminate the interference of myelin debris in oligodendrocyte progenitor cell (OPC) activation, recruitment to demyelinating sites and/or differentiation into mature oligodendrocytes (OLs). In addition to microglia, it has been reported that astrocytic phagocytosis of myelin debris is a feature of early demyelination. RESULTS: In the present study, astrocytes effectively phagocytized myelin debris in vitro and in vivo. On the 5th day after injecting myelin debris into the brain, astrocytes were enriched in the area injected with myelin debris compared with microglia, and their ability to engulf myelin debris was stronger than that of microglia. When exposed to myelin debris, astrocytes phagocytizing myelin debris triggered self-apoptosis, accompanied by the activation of NF-κB, down-regulation of Nrf2, and the increase of ciliary neurotrophic factor (CNTF) and basic fibroblast growth factor (bFGF). However, the activation of astrocytic NF-κB did not influence the inflammatory cytokines IL-1ß, IL-6, and TNF-α, and the anti-inflammatory factor IL-10. The proliferation of astrocytes and mobilization of OPCs in the subventricular zone were elevated on the 5th day after intracerebral injection of myelin debris. CONCLUSIONS: The results suggested that myelin phagocytosis of astrocytes should help improve the microenvironment and promote myelin regeneration by increasing CNTF and bFGF within the central nervous system. SIGNIFICANCE: However, the molecular interaction of astrocytes acting as phagocytes remains to be further explored. Therefore, an improvement of astrocytes to phagocytize myelin debris may be a promising treatment measure to prevent demyelination and promote remyelination in MS and other diseases with prominent myelin injury.


Asunto(s)
Enfermedades Desmielinizantes , Vaina de Mielina , Humanos , Vaina de Mielina/metabolismo , Astrocitos/metabolismo , Enfermedades Desmielinizantes/metabolismo , Factor Neurotrófico Ciliar/metabolismo , FN-kappa B/metabolismo , Fagocitosis , Oligodendroglía/metabolismo
2.
Int J Med Sci ; 21(1): 151-168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164351

RESUMEN

Background: Ischemic stroke is a common cerebrovascular accident with a high risk of neurological deficits. Stem cell therapy has progressively attracted the interest of scientists and clinicians due to the benefits of promoting neural regeneration and regulating the microenvironment surrounding the lesion after ischemic stroke. Our study aimed to evaluate the development trends and research hotspots in the field of stem cells and ischemic stroke. Materials and methods: Publications related to stem cells and ischemic stroke were retrieved from the Web of Science from 2001 to 2022. Data analysis and mapping were performed using VOSviewer, Citespace and ImageGP. Results: In total, 1932 papers were included in the analysis. Publications have steadily increased over the past 22 years. China has contributed the maximum number of publications, whereas the USA ranked first in the total number of citations and was considered the center of the international collaboration network. University of South Florida, Henry Ford Hospital, and Oakland University were the most influential institutions. Stroke, Brain Research, and Neural Regeneration Research were the most productive journals. The research in this field was primarily focused on the effects of stem cells on neurogenesis, inflammation, and angiogenesis following ischemic stroke, as well as their therapeutic potential for the disease. In addition, neural stem cells and mesenchymal stem cells are the most commonly utilized stem cells. The topics related to miRNA, extracellular vesicles, exosomes, mesenchymal stem cells, neuroinflammation, and autophagy are current research hotspots. Conclusion: Our bibliometric study provides a novel perspective on the research trends in the field of stem cells and ischemic stroke. The outcome of this study may benefit scientists to identify research hotspots and development directions, thereby advancing the application of stem cell-based therapy for ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , Células-Madre Neurales , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/terapia , Bibliometría
3.
Inflammopharmacology ; 32(1): 809-823, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177566

RESUMEN

The treatment of immunomodulation in multiple sclerosis (MS) can alleviate the severity and relapses. However, it cannot improve the neurological disability of patients due to a lack of myelin protection and regeneration. Therefore, remyelinating therapies may be one of the feasible strategies that can prevent axonal degeneration and restore neurological disability. Natural product icariin (ICA) is a flavonol compound extracted from epimedium flavonoids, which has neuroprotective effects in several models of neurological diseases. Here, we attempt to explore whether ICA has the potential to treat demyelination and its possible mechanisms of action using lipopolysaccharide-treated BV2 microglia, primary microglia, bone marrow-derived macrophages, and cuprizone-induced demyelination model. The indicators of oxidative stress and inflammatory response were evaluated using commercial kits. The results showed that ICA significantly reduced the levels of oxidative intermediates nitric oxide, hydrogen peroxide, malondialdehyde, and inflammatory cytokines TNF-α, IL-1ß, and increased the levels of antioxidants superoxide dismutase, catalase, glutathione peroxidase, and anti-inflammatory cytokines IL-10 and TGF-ß in vitro cell experiments. In vivo demyelination model, ICA significantly alleviated the behavioral abnormalities and enhanced the integrated optical density/mm2 of Black Gold II and myelin basic protein myelin staining, accompanied by the inhibition of oxidative stress/inflammatory response. Immunohistochemical staining showed that ICA significantly induced the expression of nuclear factor erythroid derived 2/heme oxygenase-1 (Nrf2/HO-1) and inhibited the expression of toll-like receptor 4/ nuclear factor kappa B (TLR4/NF-κB), which are two key signaling pathways in antioxidant and anti-inflammatory processes. Our results strongly suggest that ICA may be used as a potential agent to treat demyelination via regulating Nrf2/HO-1-mediated antioxidative stress and TLR4/NF-κB-mediated inflammatory responses.


Asunto(s)
Antioxidantes , Enfermedades Desmielinizantes , Flavonoides , Humanos , Antioxidantes/farmacología , Cuprizona/farmacología , Receptor Toll-Like 4 , FN-kappa B , Factor 2 Relacionado con NF-E2 , Antiinflamatorios/farmacología , Citocinas , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico
4.
Zhongguo Zhong Yao Za Zhi ; 49(1): 162-174, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403349

RESUMEN

This study aims to investigate whether tetramethylpyrazine(TMP) can stimulate angiogenesis in cerebral microvascular endothelial cells and alleviate cerebral ischemic stroke(CIS) and to explore the underlying mechanisms. In the animal study, adult Sprague-Dawley rats(n=15) were assigned into sham surgery(sham), middle cerebral artery occlusion/reperfusion(MCAO/R), and MCAO/R+TMP(intraperitoneal injection of 20 mg·kg~(-1)) groups. The neurological function was evaluated by the Z-Longa method. The cerebral infarction volume was detected by TTC staining. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the expression of vascular endothelial growth factor(VEGF), angiopoietin(Ang), and platelet-derived growth factor(PDGF). Immunofluorescence staining was employed to detect Ki67 and the expression of vascular endothelial growth factor A(VEGFA) and slient information regulator 1(SIRT1). Western blot was employed to determine the expression levels of VEGFA, SIRT1, angiopoietin-2(Ang-2), and platelet-derived growth factor B(PDGFB). In the cell study, mouse brain-derived endothelial cells(Bend.3) were cultured, and the optimal concentration of TMP was determined. Then, VEGF, Ang, and PDGF were detected by ELISA after the addition of cabozantinib. Western blot was employed to measure the expression of VEGFA, Ang-2, and PDGFB. Immunofluorescence staining was used to detect CD31, CD34, and Ki67, and the proliferation, migration, and tube formation ability of Bend.3 cells were observed in vitro. Western blot and immunofluorescence staining were performed to measure the expression of SIRT1 and VEGFA after addition of the SIRT1-specific inhibitor selisistat(EX-527). The results showed that compared with the sham group, the MCAO/R group had severe neurological function damage, increased infarction volume, up-regulated expression of VEGF, VEGFA, Ang, Ang-2, PDGF, and PDGFB, and down-regulated expression of Ki67 and SIRT1(P<0.01). Compared with the MCAO/R group, the MCAO/R+TMP group presented alleviated neurological function damage, reduced infarction volume, and activated expression of VEGF, VEGFA, Ang, Ang-2, PDGF, PDGFB, Ki67, and SIRT1(P<0.01). The cell experiments showed that compared with the normal group, Bend.3 cells were activated by oxygen glucose deprivation/reoxygenation(OGD/R) treatment(P<0.05, P<0.01). Compared with the OGD/R group, the OGD/R+TMP group upregulated the expression levels of VEGF, VEGFA, Ang, Ang-2, PDGF, PDGFB, SIRT1, Ki67, CD31, and CD34, enhanced the angiogenic ability of Bend.3 cells without being inhibited by BMS or EX-527(P<0.05, P<0.01, P<0.001). The results suggest that TMP can activate the SIRT1/VEGFA signaling pathway to stimulate angiogenesis and alleviate CIS injury.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Pirazinas , Accidente Cerebrovascular , Ratas , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-sis , Sirtuina 1/genética , Sirtuina 1/metabolismo , Angiogénesis , Antígeno Ki-67/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/genética , Transducción de Señal , Infarto de la Arteria Cerebral Media
5.
Neurobiol Dis ; 184: 106233, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468047

RESUMEN

Stroke is the most common cause of acquired epilepsy, but treatment for preventing the development of post-stroke epilepsy is still unavailable. Since stroke results in neuronal damage and death as well as initial loss of activity in the affected brain region, homeostatic plasticity may be trigged and contribute to an increase in network hyperexcitability that underlies epileptogenesis. Correspondingly, enhancing brain activity may inhibit hyperexcitability from enhanced homeostatic plasticity and prevent post-stroke epileptogenesis. To test these hypotheses, we first used in vivo two-photon and mesoscopic imaging of activity of cortical pyramidal neurons in Thy1-GCaMP6 transgenic mice to determine longitudinal changes in excitatory activity after a photothrombotic ischemic stroke. At 3-days post-stroke, there was a significant loss of neuronal activity in the peri-injury area as indicated by reductions in the frequency of calcium spikes and percentage of active neurons, which recovered to baseline level at day 7, supporting a homeostatic activity regulation of the surviving neurons in the peri-injury area. We further used optogenetic stimulation to specifically stimulate activity of pyramidal neurons in the peri-injury area of Thy-1 channelrhodopsin transgenic mice from day 5 to day 15 after stroke. Using pentylenetetrazole test to evaluate seizure susceptibility, we showed that stroke mice are more susceptible to Racine stage V seizures (time latency 54.3 ± 12.9 min) compared to sham mice (107.1 ± 13.6 min), but optogenetic stimulation reversed the increase in seizure susceptibility (114.0 ± 9.2 min) in mice with stroke. Similarly, administration of D-cycloserine, a partial N-methyl-d-aspartate (NMDA) receptor agonist that can mildly enhance neuronal activity without causing post-stroke seizure, from day 5 to day 15 after a stroke significantly reversed the increase in seizure susceptibility. The treatment also resulted in an increased survival of glutamic acid decarboxylase 67 (GAD67) positive interneurons and a reduced activation of glial fibrillary acidic protein (GFAP) positive reactive astrocytes. Thus, this study supports the involvement of homeostatic activity regulation in the development of post-stroke hyperexcitability and potential application of activity enhancement as a novel strategy to prevent post-stroke late-onset seizure and epilepsy through regulating cortical homeostatic plasticity.


Asunto(s)
Epilepsia , Accidente Cerebrovascular , Ratones , Animales , Optogenética/efectos adversos , Convulsiones/prevención & control , Convulsiones/complicaciones , Epilepsia/etiología , Accidente Cerebrovascular/complicaciones , Ratones Transgénicos
6.
Mol Biol Rep ; 50(1): 749-759, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36309614

RESUMEN

Microglia are resident macrophages of the central nervous system (CNS). It plays a significant role in immune surveillance under physiological conditions. On stimulation by pathogens, microglia change their phenotypes, phagocytize toxic molecules, secrete pro-inflammatory/anti-inflammatory factors, promotes tissue repair, and maintain the homeostasis in CNS. Accumulation of myelin debris in multiple sclerosis (MS)/experimental autoimmune encephalomyelitis (EAE) inhibits remyelination by decreasing the phagocytosis by microglia and prevent the recovery of MS/EAE. Drug induced microglia phagocytosis could be a novel therapeutic intervention for the treatment of MS/EAE. But the abnormal phagocytosis of neurons and synapses by activated microglia will lead to neuronal damage and degeneration. It indicates that the phagocytosis of microglia has many beneficial and harmful effects in central neurodegenerative diseases. Therefore, simply promoting or inhibiting the phagocytic activity of microglia may not achieve ideal therapeutic results. However, limited reports are available to elucidate the microglia mediated phagocytosis and its underlying molecular mechanisms. On this basis, the present review describes microglia-mediated phagocytosis, drug-induced microglia phagocytosis, molecular mechanism, and novel approach for MS/EAE treatment.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Microglía , Fagocitosis , Macrófagos , Ratones Endogámicos C57BL
7.
Metab Brain Dis ; 38(7): 2211-2222, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37470879

RESUMEN

Parkinson disease (PD) is an age-related neurodegenerative disease, which is associated with the loss of dopaminergic neurons (DA neurons) in the substantia nigra pars compacta (SNpc), and neuroinflammation may lead to the occurrence of PD. Wuzi Yanzong Pill (WYP) has demonstrated neuroprotective and anti-inflammatory properties, but its molecular mechanism of action is still unclear. In this study, we used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice and LPS-mediated BV2 microglia to explore WYP intervention, anti-inflammatory effect and molecular mechanism in vivo and in vitro. The results showed that oral administration of WYP in MPTP-induced PD mice for 2 weeks ameliorated abnormal motor dysfunction, attenuated the loss of TH + neurons in SNpc, protected dopaminergic neurons, and inhibited the activation of microglia in MPTP-induced PD mice and LPS-stimulated BV2 cell. Meanwhile, WYP intervention inhibited the expression of IL-6, TNF-α, Pro-IL-1ß, IL-1ß, Pro-IL-18, IL-18 and enhanced the expression of IL-10 in the SNpc of PD mice. Simultaneously, WYP intervention inhibited the expression of NLRP3 inflammasome, accompanied by the decrease of the TLR4/MyD88/NF-κB pathway. However, the exact target and interaction of WYP on NLRP3 inflammasome and TLR4/MyD88/NF-κB pathway still needs to be further investigated.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacología , Interleucina-18/uso terapéutico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
8.
Metab Brain Dis ; 38(3): 1035-1050, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36576692

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease characterized by the pathological loss of nigrostriatal dopaminergic neurons, which causes an insufficient release of dopamine (DA) and then induces motor and nonmotor symptoms. Hyperoside (HYP) is a lignan component with anti-inflammatory, antioxidant, and neuroprotective effects. In this study, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active neurotoxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) were used to induce dopaminergic neurodegeneration. The results showed that HYP (100 µg/mL) reduced MPTP-mediated cytotoxicity of SH-SY5Y cells in vitro, and HYP [25 mg/(kg d)] alleviated MPTP-induced motor symptoms in vivo. HYP treatment reduced the contents of nitric oxide (NO), H2O2, and malondialdehyde (MDA), as well as the mitochondrial damage of dopaminergic neurons, both in vitro and in vivo. Meanwhile, HYP treatment elevated the levels of neurotrophic factors such as glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and recombinant cerebral dopamine neurotrophic factor in vivo, but not in vitro. Finally, Akt signaling was activated after the administration of HYP in MPP+/MPTP-induced dopaminergic neurodegeneration. However, the blockage of the Akt pathway with Akt inhibitor did not abolish the neuroprotective effect of HYP on DA neurons. These results showed that HYP protected the dopaminergic neurons from the MPP+- and MPTP-induced injuries, which did not rely on the Akt pathway.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Animales , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Dopamina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Peróxido de Hidrógeno/farmacología , Neuroblastoma/metabolismo , Neuronas Dopaminérgicas , Ratones Endogámicos C57BL , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Modelos Animales de Enfermedad
9.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4201-4207, 2023 Aug.
Artículo en Zh | MEDLINE | ID: mdl-37802788

RESUMEN

This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 µg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 µg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 µg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.


Asunto(s)
Bilobálidos , Femenino , Ratas , Ratones , Animales , Bilobálidos/farmacología , Neuroprotección , Lipopolisacáridos/toxicidad , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Microglía , Citocinas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Inflamación/metabolismo
10.
Metab Brain Dis ; 37(5): 1435-1450, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35488941

RESUMEN

Wuzi Yanzong Pill (WYP) was found to play a protective role on nerve cells and neurological diseases, however the molecular mechanism is unclear. To understand the molecular mechanisms that underly the neuroprotective effect of WYP on dopaminergic neurons in Parkinson's disease (PD). PD mouse model was induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Gait and hanging tests were used to assess motor behavioral function. Immunofluorescence assay was used to determine TH-positive neurons in substantia nigra (SN). Apoptosis, dopamine and neurotrophic factors as well as expression of PI3K/Akt pathway were detected by TUNEL staining, ELISA and western blotting, respectively. First, it was observed that WYP intervention improved abnormal motor function in MPTP-induced PD model, alleviated the loss of TH+ neurons in SN, and increased dopamine content in brain, revealing a potential protective effect. Second, network pharmacology was used to analyze the possible targets and pathways of WYP action in the treatment of PD. A total of 126 active components related to PD were screened in WYP, and the related core targets included ALB, GAPDH, Akt1, TP53, IL6 and TNF. Particularly, the effect of WYP on PD may be medicate through PI3K/Akt signaling pathway and apoptotic regulation. The WYP treated PD mice had higher expression of p-PI3K, p-Akt and Bcl-2 but lower expression of Bax and cleaved caspase-3 than the non-WYP treated PD mice. Secretion of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) were also increased in the treated mice. WYP may inhibit apoptosis and increase the secretion of neurotrophic factor via activating PI3K/ Akt signaling pathway, thus protecting the loss of dopamine neurons in MPTP-induced PD mice.


Asunto(s)
Fármacos Neuroprotectores , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas , Medicamentos Herbarios Chinos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Sustancia Negra
11.
Int J Neurosci ; : 1-18, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36037147

RESUMEN

Background: The etiology of Parkinson's disease (PD), a chronic and progressive neurodegenerative disease, is multifactorial but not fully unknown. Until now, no drug has been proven to have neuroprotective or neuroregenerative effects in patients with PD.Objectives: To observe the therapeutic potential of Bilobalide (BB), a constituent of ginkgo biloba, in MPTP-induced PD model, and explore its possible mechanisms of action.Material and Methods: Mice were randomly divided into three groups: healthy group, MPTP group and MPTP + BB group. PD-related phenotypes were induced by intraperitoneal injection of MPTP into male C57BL/6 mice, and BB (40 mg/kg/day) was intraperitoneally given for 7 consecutive days at the end of modeling. The injection of saline was set up as the control in a similar manner.Results: BB induced M2 polarization of microglia, accompanied by inhibition of neuroinflammation in the brain. Simultaneously, BB promoted the expression of BDNF in astrocytes and neurons, and expression of GDNF in neurons. Most interestingly, BB enhanced the formation of GFAP+ astrocytes expressing nestin, Brn2 and Ki67, as well as the transformation of GFAP+ astrocytes expressing tyrosine hydroxylase around subventricular zone, providing experimental evidence that BB could promote the conversion of astrocytes into TH+ dopamine neurons in vivo and in vitro.Conclusions: These results suggest the natural product BB may utilize multiple pathways to modify degenerative process of TH+ neurons, revealing an exciting opportunity for novel neuroprotective therapeutics. However, its multi-target and important mechanisms need to be further explored.

12.
J Neurophysiol ; 126(5): 1756-1771, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669500

RESUMEN

Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). Here we report the temporal and spatial evolution of various functional neurons during demyelination in a cuprizone (CPZ)-induced mouse model. CPZ did not significantly induce the damage of axons and neurons after 2 wk of feeding. However, after 4-6 wk of CPZ feeding, axons and neurons were markedly reduced in the cortex, posterior thalamic nuclear group, and hippocampus. Simultaneously, the expression of TPH+ tryptophan neurons and VGLUT1+ glutamate neurons was obviously decreased, and the expression of TH+ dopaminergic neurons was slightly decreased in the tail part of the substantia nigra striatum, whereas the number of ChAT+ cholinergic neurons was not significantly different in the brain. In the second week of feeding, CPZ caused a higher level of glutamate secretion and upregulated the expression of EAAT2 on astrocytes, which should contribute to rapid and sufficient glutamate uptake and removal. This finding reveals that astrocyte-driven glutamate reuptake protected the CNS from excitotoxicity by rapid reuptake of glutamate in 4-6 wk of CPZ feeding. At this stage, although NG2+ oligodendroglia progenitor cells (OPCs) were enhanced in the demyelination foci, the myelin sheath was still absent. In conclusion, we comprehensively observed the temporal and spatial evolution of various functional neurons. Our results will assist with understanding how demyelination affects neurons during CPZ-induced demyelination and provide novel information for neuroprotection in myelin regeneration and demyelinating diseases.NEW & NOTEWORTHY Our results further indicate temporal and spatial evolution of various functional neurons during the demyelination in a cuprizone (CPZ)-induced mouse model, which mainly occur 4-6 wk after CPZ feeding. At the same time, the axonal compartment is damaged and, consequently, neuronal death occurs, while glutamate neurons are lost obviously. The astrocyte-mediated glutamate reuptake could protect the neurons from the excitatory effects of glutamate.


Asunto(s)
Astrocitos , Cuprizona/farmacología , Enfermedades Desmielinizantes , Ácido Glutámico/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Vaina de Mielina , Neuronas , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Cuprizona/administración & dosificación , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Ratones , Inhibidores de la Monoaminooxidasa/administración & dosificación , Esclerosis Múltiple/metabolismo , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología
13.
Epilepsia ; 62(12): 3105-3116, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535891

RESUMEN

OBJECTIVE: Effective treatment for the prevention of posttraumatic epilepsy is still not available. Here, we sought to determine whether blocking receptor for advanced glycation end products (RAGE) or toll-like receptor 4 (TLR4) signaling pathways would prevent posttraumatic epileptogenesis. METHODS: In a mouse undercut model of posttraumatic epilepsy, daily injections of saline, RAGE monoclonal antibody (mAb), or TAK242, a TLR4 inhibitor, were made for 1 week. Their effects on seizure susceptibility and spontaneous epileptic seizures were evaluated with a pentylenetetrazol (PTZ) test in 2 weeks and with continuous video and wireless electroencephalography (EEG) monitoring between 2 and 6 weeks after injury, respectively. Seizure susceptibility after undercut in RAGE knockout mice was also evaluated with the PTZ test. The lesioned cortex was analyzed with immunohistology. RESULTS: Undercut animals treated with RAGE mAb or TAK242 showed significantly higher seizure threshold than saline-treated undercut mice. Consistently, undercut injury in RAGE knockout mice did not cause a reduction in seizure threshold in the PTZ test. EEG and video recordings revealed a significant decrease in the cumulative spontaneous seizure events in the RAGE mAb- or TAK242-treated group (p < 0.001, when the RAGE mAb or TAK242 group is compared with the saline group). The lesioned cortical tissues of RAGE mAb- or TAK242-treated undercut group showed higher neuronal densities of Nissl staining and higher densities of glutamic acid decarboxylase 67-immunoreactive interneurons than the saline-treated undercut group. Immunostaining to GFAP and Iba-1 revealed lower densities of astrocytes and microglia in the cortex of the treatment groups, suggesting reduced glia activation. SIGNIFICANCE: RAGE and TLR4 signaling are critically involved in posttraumatic epileptogenesis. Blocking these pathways early after traumatic brain injury is a promising strategy for preventing posttraumatic epilepsy.


Asunto(s)
Epilepsia Postraumática , Epilepsia , Animales , Modelos Animales de Enfermedad , Epilepsia/complicaciones , Epilepsia Postraumática/etiología , Ratones , Ratones Noqueados , Pentilenotetrazol/toxicidad , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Convulsiones/etiología , Receptor Toll-Like 4/metabolismo
14.
Neurochem Res ; 46(12): 3149-3158, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34415495

RESUMEN

Hyperoside has a variety of pharmacological activities, including anti-liver injury, anti-depression, anti-inflammatory, and anti-cancer activities. However, the effect of hyperoside on Parkinson's disease (PD) is still unclear. Therefore, we tried to study the therapeutic effect and mechanism of hyperoside on PD in vivo and in vitro models. Rotenone was used to induce PD rat model and SH-SY5Y cell injury model, and hyperoside was used for intervention. Immunohistochemistry, animal behavior assays, TUNEL and Western blot were constructed to observe the protective effect and related mechanisms of hyperoside in vivo. Cell counting kit-8 (CCK-8), flow cytometry, Rh123 staining and Western blot were used for in vitro assays. Rapamycin (RAP) pretreatment was used in rescue experiments to verify the relationship between hyperoside and autophagy in rotenone-induced SH-SY5Y cells. Hyperoside promoted the number of tyrosine hydroxylase (TH)-positive cells, improved the behavioral defects of rats, and inhibited cell apoptosis in vivo. Different concentrations of hyperoside had no significant effect on SH-SY5Y cell viability, but dramatically reversed the rotenone-induced decrease in cell viability, increased apoptosis and loss of cell mitochondrial membrane potential in vitro. Additionally, hyperoside reversed the regulation of rotenone on the Beclin1, LC3II, Bax, cleaved caspase 3, Cyc and Bcl-2 expressions in rat SNpc tissues and SH-SY5Y cells, while promoted the regulation of rotenone on the P62 and α-synuclcin. Furthermore, RAP reversed the effect of hyperoside on rotenone-induced SH-SY5Y cells. Hyperoside may play a neuroprotective effect in rotenone-induced PD rat model and SH-SY5Y cell model by affecting autophagy.


Asunto(s)
Autofagia , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Quercetina/análogos & derivados , Rotenona/toxicidad , Animales , Apoptosis , Insecticidas/toxicidad , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Quercetina/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno
15.
Biol Pharm Bull ; 43(12): 1839-1846, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268701

RESUMEN

Polygala tenuifolia Willd. is a traditional Chinese herbal medicine that is widely used in treating nervous system disorders. Triterpene saponins in P. tenuifolia (polygala saponins) have excellent biological activity. As a precursor for the synthesis of presenegin, oleanolic acid (OA) plays an important role in the biosynthesis of polygala saponins. However, the mechanism behind the biosynthesis of polygala saponins remains to be elucidated. In this study, we found that CYP716A249 (GenBank: ASB17946) oxidized the C-28 position of ß-amyrin to produce OA. Using quantitative real-time PCR, we observed that CYP716A249 had the highest expression in the roots of 2-year-old P. tenuifolia, which provided a basis for the selection of samples for gene cloning. To identify the function of CYP716A249, the strain R-BE-20 was constructed by expressing ß-amyrin synthase in yeast. Then, CYP716A249 was co-expressed with ß-amyrin synthase to construct the strain R-BPE-20 by using the lithium acetate method. Finally, we detected ß-amyrin and OA by ultra-HPLC-Q Exactive hybrid quadrupole-Orbitrap high-resolution accurate mass spectrometry and GC-MS. The results of this study provide insights into the biosynthesis pathway of polygala saponins.


Asunto(s)
Clonación Molecular/métodos , Polygala/genética , Polygala/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Triterpenos/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/genética , Ácido Oleanólico/metabolismo , Filogenia , Saccharomyces cerevisiae , Saponinas/biosíntesis , Saponinas/genética
16.
Metab Brain Dis ; 35(5): 793-807, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32215835

RESUMEN

Inflammatory demyelination in the central nervous system (CNS) is a hallmark of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Besides MS disease-modifying therapy, targeting myelin sheath protection/regeneration is currently a hot spot in the treatment of MS. Here, we attempt to explore the therapeutic potential of Bilobalide (BB) for the myelin protection/regeneration in EAE model. The results showed that BB treatment effectively prevented worsening and demyelination of EAE, accompanied by the inhibition of neuroinflammation that should be closely related to T cell tolerance and M2 macrophages/microglia polarization. BB treatment substantially inhibited the infiltration of T cells and macrophages, thereby alleviating the enlargement of neuroinflammation and the apoptosis of oligodendrocytes in CNS. The accurate mechanism of BB action and the feasibility of clinical application in the prevention and treatment of demyelination remain to be further explored.


Asunto(s)
Ciclopentanos/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Furanos/uso terapéutico , Ginkgólidos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Femenino , Activación de Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Regeneración Nerviosa/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Remielinización/efectos de los fármacos , Linfocitos T/inmunología
17.
J Integr Neurosci ; 19(4): 651-662, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33378839

RESUMEN

Recent studies have shown that Nogo-A and the Nogo-A receptor affect ß-amyloid metabolism and the downstream Rho GTP enzyme signaling pathway, which may affect the levels of ß-amyloid and tau. Nogo-A may play a key role in the pathogenesis of Alzheimer's disease. However, the underlying molecular mechanisms of Fasudil treatment in Alzheimer's disease are not yet clear. Our results have found that Fasudil treatment for two months substantially ameliorated behavioral deficits, diminished ß-amyloid plaque and tau protein pathology, and alleviated neuronal apoptosis in APP/PS1 transgenic mice. More importantly, two well-established markers for synaptic function, growth-associated protein 43 and synaptophysin, were upregulated after Fasudil treatment. Finally, the levels of Nogo-A, Nogo-A receptor complex NgR/p75NTR/LINGO-1 and the downstream Rho/Rho kinase signaling pathway were significantly reduced. These findings suggest that Fasudil exerts its neuroprotective function in Alzheimer's disease by inhibiting the Nogo-A/NgR1/RhoA signaling pathway.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/efectos de los fármacos , Apoptosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas tau/efectos de los fármacos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nogo/efectos de los fármacos , Receptor Nogo 1/efectos de los fármacos , Quinasas Asociadas a rho/efectos de los fármacos
18.
Clin Immunol ; 201: 35-47, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30660624

RESUMEN

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system characterized by oligodendrocyte loss and progressive neurodegeneration. The cuprizone (CPZ)-induced demyelination is widely used to investigate the demyelination/remyelination. Here, we explored the therapeutic effects of Hydroxyfasudil (HF), an active metabolite of Fasudil, in CPZ model. HF improved behavioral abnormality and reduced myelin damage in the corpus callosum. Splenic atrophy and myelin oligodendrocyte glycoprotein (MOG) antibody were observed in CPZ model, which were partially restored and obviously inhibited by HF, therefore reducing pathogenic binding of MOG antibody to oligodendrocytes. HF inhibited the percentages of CD4+IL-17+ T cells from splenocytes and infiltration of CD4+ T cells and CD68+ macrophages in the brain. HF also declined microglia-mediated neuroinflammation, and promoted the production of astrocyte-derived brain derived neurotrophic factor (BDNF) and regeneration of NG2+ oligodendrocyte precursor cells. These results provide potent evidence for the therapeutic effects of HF in CPZ-induced demyelination.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Enfermedades Desmielinizantes/tratamiento farmacológico , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/uso terapéutico , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Linfocitos T CD4-Positivos/efectos de los fármacos , Cuprizona , Citocinas/inmunología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Bazo/efectos de los fármacos , Bazo/patología
19.
J Neuroinflammation ; 16(1): 149, 2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324254

RESUMEN

BACKGROUND: Unrestrained activation of Th1 and Th17 cells is associated with the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). While inactivation of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, can reduce EAE severity by protecting myelin from demyelination, its effect on immune responses in EAE has not yet been studied. METHODS: We investigated the effect of Mdivi-1, a small molecule inhibitor of Drp1, on EAE. Clinical scores, inflammation, demyelination and Drp1 activation in the central nervous system (CNS), and T cell responses in both CNS and periphery were determined. RESULTS: Mdivi-1 effectively suppressed EAE severity by reducing demyelination and cellular infiltration in the CNS. Mdivi-1 treatment decreased the phosphorylation of Drp1 (ser616) on CD4+ T cells, reduced the numbers of Th1 and Th17 cells, and increased Foxp3+ regulatory T cells in the CNS. Moreover, Mdivi-1 treatment effectively inhibited IFN-γ+, IL-17+, and GM-CSF+ CD4+ T cells, while it induced CD4+ Foxp3+ regulatory T cells in splenocytes by flow cytometry. CONCLUSIONS: Together, our results demonstrate that Mdivi-1 has therapeutic potential in EAE by modulating the balance between Th1/Th17 and regulatory T cells.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Quinazolinonas/farmacología , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Animales , Inhibidores Enzimáticos/farmacología , Femenino , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas de Unión al ARN/antagonistas & inhibidores , Linfocitos T Colaboradores-Inductores/inmunología
20.
FASEB J ; 32(6): 3336-3345, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401614

RESUMEN

The activation of microglia and the various substances they produce have been linked to the pathologic development of Parkinson's disease (PD), but the precise role of microglia in PD remains to be defined. The survival of microglia depends on colony-stimulating factor 1 receptor (CSF1R) signaling, and CSF1R inhibition results in rapid elimination of microglia in the central nervous system. Using a mouse PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment, we showed that the depletion of microglia via the CSF1R inhibitor PLX3397 exacerbated the impairment of locomotor activities and the loss of dopaminergic neurons. Further, depletion of microglia augmented the production of inflammatory mediators and infiltration of leukocytes in the brain after MPTP exposure. Microglia depletion-induced aggravation of MPTP neurotoxicity was also seen in lymphocyte-deficient mice. In addition, the depletion of microglia did not affect the production of brain-derived neurotrophic factor, but it dramatically augmented the production of inflammatory mediators by astrocytes after MPTP treatment. Our findings suggest microglia play a protective role against MPTP-induced neuroinflammation and dopaminergic neurotoxicity.-Yang, X., Ren, H., Wood, K., Li, M., Qiu, S., Shi, F.-D., Ma, C., Liu, Q. Depletion of microglia augments the dopaminergic neurotoxicity of MPTP.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Mediadores de Inflamación/metabolismo , Leucocitos/metabolismo , Intoxicación por MPTP/metabolismo , Microglía/metabolismo , Aminopiridinas/farmacología , Animales , Neuronas Dopaminérgicas/patología , Leucocitos/patología , Intoxicación por MPTP/patología , Masculino , Ratones , Ratones Noqueados , Microglía/patología , Pirroles/farmacología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA