Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fa Yi Xue Za Zhi ; 39(3): 262-270, 2023 Jun 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-37517014

RESUMEN

OBJECTIVES: To compare the application value of the likelihood ratio (LR) method and identity by state (IBS) method in the identification involving half sibling relationships, and to provide a reference for the setting of relevant standards for identification of half sibling relationship. METHODS: (1) Based on the same genetic marker combinations, the reliability of computer simulation method was verified by comparing the distributions of cumulated identity by state score (CIBS) and combined full sibling index in actual cases with the distributions in simulated cases. (2) In different numbers of three genetic marker combinations, the simulation of full sibling, half sibling and unrelated individual pairs, each 1 million pairs, was obtained; the CIBS, as well as the corresponding types of cumulative LR parameters, were calculated. (3) The application value of LR method was compared with that of IBS method, by comparing the best system efficiency provided by LR method and IBS method when genetic markers in different amounts and of different types and accuracy were applied to distinguish the above three relational individual pairs. (4) According to the existing simulation data, the minimum number of genetic markers required to distinguish half siblings from the other two relationships using different types of genetic markers was estimated by curve fitting. RESULTS: (1) After the rank sum test, under the premise that the real relationship and the genetic marker combination tested were the same, there was no significant difference between the simulation method and the results obtained in the actual case. (2) In most cases, under the same conditions, the system effectiveness obtained by LR method was greater than that by IBS method. (3) According to the existing data, the number of genetic markers required for full-half siblings and half sibling identification could be obtained by curve fitting when the system effectiveness reached 0.95 or 0.99. CONCLUSIONS: When distinguishing half sibling from full sibling pairs or unrelated pairs, it is recommended to give preference to the LR method, and estimate the required number of markers according to the identification types and the population data, to ensure the identification effect.


Asunto(s)
Hermanos , Humanos , Simulación por Computador , Marcadores Genéticos , Genotipo , Reproducibilidad de los Resultados
2.
Forensic Sci Int Genet ; 55: 102580, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454122

RESUMEN

Next generation sequencing (NGS)-based single nucleotide polymorphism (SNP) genotyping is widely used in the field of forensics. SNP genotyping data from several NGS platforms have been published, but forensic application trials of DNA nanoball sequencing platforms have been very limited. In this work, we developed a 448-plex SNP panel on the BGISEQ-500RS platform. The sequencing metrics of a total of 261 samples that were sequenced with this panel are reported in detail. The average sequencing depth was 8373 × and the average heterozygosity of the 448-plex assay was 0.85. Sensitivity analysis showed that 325 SNPs were successfully genotyped with as little as 50 pg of genomic DNA, with the mean quality score of the sequencing data above Q30. Forensic parameters were calculated based on the data of 142 unrelated Chinese Han individuals and the combined matching probability was as low as 5.21 × 10-101. Kinship analyses based on experiments and computer simulations showed that the 448-panel was as effective as the ForenSeq™ DNA Signature Prep Kit for second-degree kinship identification, and when the two panels were merged, the related pairs were almost completely distinguished from unrelated pairs. The 448-plex SNP panel on the BGISEQ-500RS platform provides a powerful tool for forensic individual identification and kinship analysis.


Asunto(s)
Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Dermatoglifia del ADN , Genética Forense , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA