Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Mol Psychiatry ; 29(5): 1453-1464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321120

RESUMEN

Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.


Asunto(s)
Modelos Animales de Enfermedad , Inflamación , Bulbo Olfatorio , Mucosa Olfatoria , Trastornos Psicóticos , Esquizofrenia , Animales , Mucosa Olfatoria/patología , Mucosa Olfatoria/metabolismo , Trastornos Psicóticos/patología , Ratones , Humanos , Masculino , Inflamación/metabolismo , Inflamación/patología , Bulbo Olfatorio/patología , Bulbo Olfatorio/metabolismo , Femenino , Esquizofrenia/patología , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Esquizofrenia/genética , Trastornos del Olfato/etiología , Trastornos del Olfato/fisiopatología , Olfato/fisiología , Adulto , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología
2.
J Neurosci ; 43(45): 7501-7510, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940584

RESUMEN

Smell loss has caught public attention during the recent COVID-19 pandemic. Research on olfactory function in health and disease gains new momentum. Smell deficits have long been recognized as an early clinical sign associated with neuropsychiatric disorders. Here we review research on the associations between olfactory deficits and neuropathological conditions, focusing on recent progress in four areas: (1) human clinical studies of the correlations between smell deficits and neuropsychiatric disorders; (2) development of olfactory mucosa-derived tissue and cell models for studying the molecular pathologic mechanisms; (3) recent findings in brain imaging studies of structural and functional connectivity changes in olfactory pathways in neuropsychiatric disorders; and (4) application of preclinical animal models to validate and extend the findings from human subjects. Together, these studies have provided strong evidence of the link between the olfactory system and neuropsychiatric disorders, highlighting the relevance of deepening our understanding of the role of the olfactory system in pathophysiological processes. Following the lead of studies reviewed here, future research in this field may open the door to the early detection of neuropsychiatric disorders, personalized treatment approaches, and potential therapeutic interventions through nasal administration techniques, such as nasal brush or nasal spray.


Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Olfato/fisiología , Trastornos del Olfato/etiología , Pandemias , COVID-19/complicaciones , Mucosa Olfatoria
3.
Semin Cell Dev Biol ; 129: 31-39, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33975755

RESUMEN

Olfactory dysfunction is manifested in a wide range of neurological and psychiatric diseases, and often emerges prior to the onset of more classical symptoms and signs. From a behavioral perspective, olfactory deficits typically arise in conjunction with impairments of cognition, motivation, memory, and emotion. However, a conceptual framework for explaining the impact of olfactory processing on higher brain functions in health and disease remains lacking. Here we aim to provide circuit-level insights into this question by synthesizing recent advances in olfactory network connectivity with other cortical brain regions such as the prefrontal cortex. We will focus on social cognition as a representative model for exploring and critically evaluating the relationship between olfactory cortices and higher-order cortical regions in rodent models. Although rodents do not recapitulate all dimensions of human social cognition, they have experimentally accessible neural circuits and well-established behavioral tests for social motivation, memory/recognition, and hierarchy, which can be extrapolated to other species including humans. In particular, the medial prefrontal cortex (mPFC) has been recognized as a key brain region in mediating social cognition in both rodents and humans. This review will highlight the underappreciated connectivity, both anatomical and functional, between the olfactory system and mPFC circuitry, which together provide a neural substrate for olfactory modulation of social cognition and social behaviors. We will provide future perspectives on the functional investigation of the olfactory-mPFC circuit in rodent models and discuss how to translate such animal research to human studies.


Asunto(s)
Corteza Prefrontal , Cognición Social , Animales , Encéfalo , Cognición , Humanos , Conducta Social
4.
Semin Cell Dev Biol ; 129: 22-30, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34462249

RESUMEN

Olfactory dysfunction is often the earliest indicator of disease in a range of neurological and psychiatric disorders. One tempting working hypothesis is that pathological changes in the peripheral olfactory system where the body is exposed to many adverse environmental stressors may have a causal role for the brain alteration. Whether and how the peripheral pathology spreads to more central brain regions may be effectively studied in rodent models, and there is successful precedence in experimental models for Parkinson's disease. It is of interest to study whether a similar mechanism may underlie the pathology of psychiatric illnesses, such as schizophrenia. However, direct comparison between rodent models and humans includes challenges under light of comparative neuroanatomy and experimental methodologies used in these two distinct species. We believe that neuroimaging modality that has been the main methodology of human brain studies may be a useful viewpoint to address and fill the knowledge gap between rodents and humans in this scientific question. Accordingly, in the present review article, we focus on brain imaging studies associated with olfaction in healthy humans and patients with neurological and psychiatric disorders, and if available those in rodents. We organize this review article at three levels: 1) olfactory bulb (OB) and peripheral structures of the olfactory system, 2) primary olfactory cortical and subcortical regions, and 3) associated higher-order cortical regions. This research area is still underdeveloped, and we acknowledge that further validation with independent cohorts may be needed for many studies presented here, in particular those with human subjects. Nevertheless, whether and how peripheral olfactory disturbance impacts brain function is becoming even a hotter topic in the ongoing COVID-19 pandemic, given the risk of long-term changes of mental status associated with olfactory infection of SARS-CoV-2. Together, in this review article, we introduce this underdeveloped but important research area focusing on its implications in neurological and psychiatric disorders, with several pioneered publications.


Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Neuroimagen/efectos adversos , Trastornos del Olfato/diagnóstico por imagen , Trastornos del Olfato/etiología , Trastornos del Olfato/patología , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/patología , Pandemias , SARS-CoV-2 , Olfato
5.
Cereb Cortex ; 33(4): 1504-1526, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35511680

RESUMEN

BACKGROUND: Sensory perception is profoundly shaped by attention. Attending to an odor strongly regulates if and how it is perceived - yet the brain systems involved in this process are unknown. Here we report integration of the medial prefrontal cortex (mPFC), a collection of brain regions integral to attention, with the olfactory system in the context of selective attention to odors. METHODS: First, we used tracing methods to establish the tubular striatum (TuS, also known as the olfactory tubercle) as the primary olfactory region to receive direct mPFC input in rats. Next, we recorded (i) local field potentials from the olfactory bulb (OB), mPFC, and TuS, or (ii) sniffing, while rats completed an olfactory selective attention task. RESULTS: Gamma power and coupling of gamma oscillations with theta phase were consistently high as rats flexibly switched their attention to odors. Beta and theta synchrony between mPFC and olfactory regions were elevated as rats switched their attention to odors. Finally, we found that sniffing was consistent despite shifting attentional demands, suggesting that the mPFC-OB theta coherence is independent of changes in active sampling. CONCLUSIONS: Together, these findings begin to define an olfactory attention network wherein mPFC activity, as well as that within olfactory regions, are coordinated based upon attentional states.


Asunto(s)
Bulbo Olfatorio , Olfato , Ratas , Animales , Odorantes , Encéfalo , Corteza Prefrontal
6.
FASEB J ; 36(7): e22384, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35639289

RESUMEN

Odorant receptors (ORs) expressed in mammalian olfactory sensory neurons are essential for the sense of smell. However, structure-function studies of many ORs are hampered by unsuccessful heterologous expression. To understand and eventually overcome this bottleneck, we performed heterologous expression and functional assays of over 80 OR variants and chimeras. Combined with literature data and machine learning, we found that the transmembrane domain 4 (TM4) and its interactions with neighbor residues are important for OR functional expression. The data highlight critical roles of T4.62 therein. ORs that fail to reach the cell membrane can be rescued by modifications in TM4. Consequently, such modifications in MOR256-3 (Olfr124) also alter OR responses to odorants. T1614.62 P causes the retention of MOR256-3 in the endoplasmic reticulum (ER), while T1614.62 P/T1484.49 A reverses the retention and makes receptor trafficking to cell membrane. This study offers new clues toward wide-range functional studies of mammalian ORs.


Asunto(s)
Receptores Odorantes , Animales , Membrana Celular/metabolismo , Mamíferos/metabolismo , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato
7.
J Neurosci ; 41(26): 5620-5637, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34016714

RESUMEN

The adult olfactory epithelium (OE) regenerates sensory neurons and nonsensory supporting cells from resident stem cells after injury. How supporting cells contribute to OE regeneration remains largely unknown. In this study, we elucidated a novel role of Ym2 (also known as Chil4 or Chi3l4), a chitinase-like protein expressed in supporting cells, in regulating regeneration of the injured OE in vivo in both male and female mice and cell proliferation/differentiation in OE colonies in vitro We found that Ym2 expression was enhanced in supporting cells after OE injury. Genetic knockdown of Ym2 in supporting cells attenuated recovery of the injured OE, while Ym2 overexpression by lentiviral infection accelerated OE regeneration. Similarly, Ym2 bidirectionally regulated cell proliferation and differentiation in OE colonies. Furthermore, anti-inflammatory treatment reduced Ym2 expression and delayed OE regeneration in vivo and cell proliferation/differentiation in vitro, which were counteracted by Ym2 overexpression. Collectively, this study revealed a novel role of Ym2 in OE regeneration and cell proliferation/differentiation of OE colonies via interaction with inflammatory responses, providing new clues to the function of supporting cells in these processes.SIGNIFICANCE STATEMENT The mammalian olfactory epithelium (OE) is a unique neural tissue that regenerates sensory neurons and nonsensory supporting cells throughout life and postinjury. How supporting cells contribute to this process is not entirely understood. Here we report that OE injury causes upregulation of a chitinase-like protein, Ym2, in supporting cells, which facilitates OE regeneration. Moreover, anti-inflammatory treatment reduces Ym2 expression and delays OE regeneration, which are counteracted by Ym2 overexpression. This study reveals an important role of supporting cells in OE regeneration and provides a critical link between Ym2 and inflammation in this process.


Asunto(s)
Quitinasas/metabolismo , Inflamación/metabolismo , Mucosa Olfatoria/fisiología , Regeneración/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos
8.
J Neurosci ; 39(48): 9546-9559, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31628176

RESUMEN

Sensory cortices process stimuli in manners essential for perception. Very little is known regarding interactions between olfactory cortices. The piriform "primary" olfactory cortex, especially its anterior division (aPCX), extends dense association fibers into the ventral striatum's olfactory tubercle (OT), yet whether this corticostriatal pathway is capable of shaping OT activity, including odor-evoked activity, is unknown. Further unresolved is the synaptic circuitry and the spatial localization of OT-innervating PCX neurons. Here we build upon standing literature to provide some answers to these questions through studies in mice of both sexes. First, we recorded the activity of OT neurons in awake mice while optically stimulating principal neurons in the aPCX and/or their association fibers in the OT while the mice were delivered odors. This uncovered evidence that PCX input indeed influences OT unit activity. We then used patch-clamp recordings and viral tracing to determine the connectivity of aPCX neurons upon OT neurons expressing dopamine receptor types D1 or D2, two prominent cell populations in the OT. These investigations uncovered that both populations of neurons receive monosynaptic inputs from aPCX glutamatergic neurons. Interestingly, this input originates largely from the ventrocaudal aPCX. These results shed light on some of the basic physiological properties of this pathway and the cell-types involved and provide a foundation for future studies to identify, among other things, whether this pathway has implications for perception.SIGNIFICANCE STATEMENT Sensory cortices interact to process stimuli in manners considered essential for perception. Very little is known regarding interactions between olfactory cortices. The present study sheds light on some of the basic physiological properties of a particular intercortical pathway in the olfactory system and provides a foundation for future studies to identify, among other things, whether this pathway has implications for perception.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Tubérculo Olfatorio/metabolismo , Corteza Piriforme/metabolismo , Receptores de Dopamina D1/biosíntesis , Receptores de Dopamina D2/biosíntesis , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Odorantes , Neuronas Receptoras Olfatorias/efectos de los fármacos , Tubérculo Olfatorio/efectos de los fármacos , Corteza Piriforme/efectos de los fármacos , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Olfato/fisiología
9.
J Neurosci ; 37(39): 9403-9414, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28847812

RESUMEN

Lgr5, leucine-rich repeat-containing G-protein coupled receptor 5, is a bona fide biomarker for stem cells in multiple tissues. Lgr5 is also expressed in the brain, but the identities and properties of these Lgr5+ cells are still elusive. Using an Lgr5-EGFP reporter mouse line, we found that, from early development to adulthood, Lgr5 is highly expressed in the olfactory bulb (OB), an area with ongoing neurogenesis. Immunostaining with stem cell, glial, and neuronal markers reveals that Lgr5 does not label stem cells in the OB but instead labels a heterogeneous population of neurons with preference in certain subtypes. Patch-clamp recordings in OB slices reveal that Lgr5-EGFP+ cells fire action potentials and display spontaneous excitatory postsynaptic events, indicating that these neurons are integrated into OB circuits. Interestingly, R-spondin 3, a potential ligand of Lgr5, is also expressed in the adult OB. Collectively, our data indicate that Lgr5-expressing cells in the OB are fully differentiated neurons and imply distinct roles of Lgr5 and its ligand in postmitotic cells.SIGNIFICANCE STATEMENT Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) is a bona fide stem cell marker in many body organs. Here we report that Lgr5 is also highly expressed in the olfactory bulb (OB), the first relay station in the brain for processing odor information and one of the few neural structures that undergo continuous neurogenesis. Surprisingly, Lgr5 is not expressed in the OB stem cells, but instead in a few subtypes of terminally differentiated neurons, which are incorporated into the OB circuit. This study reveals that Lgr5+ cells in the brain represent a nonstem cell lineage, implying distinct roles of Lgr5 in postmitotic neurons.


Asunto(s)
Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Potenciales de Acción , Animales , División Celular , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Receptores Acoplados a Proteínas G/genética , Trombospondinas/genética , Trombospondinas/metabolismo
10.
J Neurosci ; 37(27): 6442-6459, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28576936

RESUMEN

Dendritic spines are postsynaptic structures in neurons often having a mushroom-like shape. Physiological significance and cytoskeletal mechanisms that maintain this shape are poorly understood. The spectrin-based membrane skeleton maintains the biconcave shape of erythrocytes, but whether spectrins also determine the shape of nonerythroid cells is less clear. We show that ßIII spectrin in hippocampal and cortical neurons from rodent embryos of both sexes is distributed throughout the somatodendritic compartment but is particularly enriched in the neck and base of dendritic spines and largely absent from spine heads. Electron microscopy revealed that ßIII spectrin forms a detergent-resistant cytoskeletal network at these sites. Knockdown of ßIII spectrin results in a significant decrease in the density of dendritic spines. Surprisingly, the density of presynaptic terminals is not affected by ßIII spectrin knockdown. However, instead of making normal spiny synapses, the presynaptic structures in ßIII spectrin-depleted neurons make shaft synapses that exhibit increased amplitudes of miniature EPSCs indicative of excessive postsynaptic excitation. Thus, ßIII spectrin is necessary for formation of the constricted shape of the spine neck, which in turn controls communication between the synapse and the parent dendrite to prevent excessive excitation. Notably, mutations of SPTNB2 encoding ßIII spectrin are associated with neurodegenerative syndromes, spinocerebellar ataxia Type 5, and spectrin-associated autosomal recessive cerebellar ataxia Type 1, but molecular mechanisms linking ßIII spectrin functions to neuronal pathologies remain unresolved. Our data suggest that spinocerebellar ataxia Type 5 and spectrin-associated autosomal recessive cerebellar ataxia Type 1 pathology likely arises from poorly controlled synaptic activity that leads to excitotoxicity and neurodegeneration.SIGNIFICANCE STATEMENT Dendritic spines are small protrusions from neuronal dendrites that make synapses with axons of other neurons in the brain. Dendritic spines usually have a mushroom-like shape, which is essential for brain functions, because aberrant spine morphology is associated with many neuropsychiatric disorders. The bulbous head of a mushroom-shaped spine makes the synapse, whereas the narrow neck transmits the incoming signals to the dendrite and supposedly controls the signal propagation. We show that a cytoskeletal protein ßIII spectrin plays a key role for the formation of narrow spine necks. In the absence of ßIII spectrin, dendritic spines collapse onto dendrites. As a result, synaptic strength exceeds acceptable levels and damages neurons, explaining pathology of human syndromes caused by ßIII spectrin mutations.


Asunto(s)
Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Neurogénesis/fisiología , Neuronas/fisiología , Espectrina/metabolismo , Transmisión Sináptica/fisiología , Animales , Encéfalo/fisiología , Encéfalo/ultraestructura , Células Cultivadas , Masculino , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley
11.
Proc Natl Acad Sci U S A ; 112(48): 14966-71, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627247

RESUMEN

Mammals detect and discriminate numerous odors via a large family of G protein-coupled odorant receptors (ORs). However, little is known about the molecular and structural basis underlying OR response properties. Using site-directed mutagenesis and computational modeling, we studied ORs sharing high sequence homology but with different response properties. When tested in heterologous cells by diverse odorants, MOR256-3 responded broadly to many odorants, whereas MOR256-8 responded weakly to a few odorants. Out of 36 mutant MOR256-3 ORs, the majority altered the responses to different odorants in a similar manner and the overall response of an OR was positively correlated with its basal activity, an indication of ligand-independent receptor activation. Strikingly, a single mutation in MOR256-8 was sufficient to confer both high basal activity and broad responsiveness to this receptor. These results suggest that broad responsiveness of an OR is at least partially attributed to its activation likelihood.


Asunto(s)
Mutación Puntual , Receptores Odorantes/metabolismo , Animales , Línea Celular , Ratones , Mutagénesis Sitio-Dirigida , Receptores Odorantes/genética
12.
Proc Natl Acad Sci U S A ; 112(2): 590-5, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25550517

RESUMEN

Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR-G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction.


Asunto(s)
Mecanotransducción Celular/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/fisiología , Animales , Señalización del Calcio , Células HEK293 , Humanos , Mecanorreceptores/fisiología , Mecanotransducción Celular/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Receptores Odorantes/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
13.
J Am Chem Soc ; 137(26): 8611-8616, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26090619

RESUMEN

Odorant receptor (OR) genes and proteins represent more than 2% of our genome and 4% of our proteome and constitute the largest subgroup of G protein-coupled receptors (GPCRs). The mechanism underlying OR activation remains poorly understood, as they do not share some of the highly conserved motifs critical for activation of non-olfactory GPCRs. By combining site-directed mutagenesis, heterologous expression, and molecular dynamics simulations that capture the conformational change of constitutively active mutants, we tentatively identified crucial residues for the function of these receptors using the mouse MOR256-3 (Olfr124) as a model. The toggle switch for sensing agonists involves a highly conserved tyrosine residue in helix VI. The ionic lock is located between the "DRY" motif in helix III and a positively charged "R/K" residue in helix VI. This study provides an unprecedented model that captures the main mechanisms of odorant receptor activation.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores Odorantes/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Ratones , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Programas Informáticos , Tirosina/química
14.
Mol Cell Neurosci ; 58: 1-10, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24211702

RESUMEN

In the mouse, mature olfactory sensory neurons (OSNs) express one allele of one of the ~1200 odorant receptor (OR) genes, which encode G-protein coupled receptors (GPCRs). Axons of OSNs that express the same OR coalesce into homogeneous glomeruli at conserved positions in the olfactory bulb. ORs are involved in OR gene choice and OSN axonal wiring, but the mechanisms remain poorly understood. One approach is to substitute an OR genetically with another GPCR, and to determine in which aspects this GPCR can serve as a surrogate OR under experimental conditions. Here, we characterize a novel gene-targeted mouse strain in which the mouse ß2-adrenergic receptor (ß2AR) is coexpressed with tauGFP in OSNs that choose the OR locus M71 for expression (ß2AR→M71-GFP). By crossing these mice with ß2AR→M71-lacZ gene-targeted mice, we find that differentially tagged ß2AR→M71 alleles are expressed monoallelically. The OR coding sequence is thus not required for monoallelic expression - the expression of one of the two alleles of a given OR gene in an OSN. We detect strong ß2AR immunoreactivity in dendritic cilia of ß2AR→M71-GFP OSNs. These OSNs respond to the ß2AR agonist isoproterenol in a dose-dependent manner. Axons of ß2AR→M71-GFP OSNs coalesce into homogeneous glomeruli, and ß2AR immunoreactivity is detectable within these glomeruli. We do not find evidence for expression of endogenous ß2AR in OSNs of wild-type mice, also not in M71-expressing OSNs, and we do not observe overt differences in the olfactory system of ß2AR and ß1AR knockout mice. Our findings corroborate the experimental value of the ß2AR as a surrogate OR, including for the study of the mechanisms of monoallelic expression.


Asunto(s)
Neuronas Receptoras Olfatorias/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores Odorantes/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/efectos de los fármacos , Receptores Adrenérgicos beta 2/genética , Receptores Odorantes/genética
15.
Proc Natl Acad Sci U S A ; 109(9): 3492-7, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22328155

RESUMEN

Odorant receptors (ORs) in olfactory sensory neurons (OSNs) mediate detection of volatile odorants. Divalent sulfur compounds, such as thiols and thioethers, are extremely potent odorants. We identify a mouse OR, MOR244-3, robustly responding to (methylthio)methanethiol (MeSCH(2)SH; MTMT) in heterologous cells. Found specifically in male mouse urine, strong-smelling MTMT [human threshold 100 parts per billion (ppb)] is a semiochemical that attracts female mice. Nonadjacent thiol and thioether groups in MTMT suggest involvement of a chelated metal complex in MOR244-3 activation. Metal ion involvement in thiol-OR interactions was previously proposed, but whether these ions change thiol-mediated OR activation remained unknown. We show that copper ion among all metal ions tested is required for robust activation of MOR244-3 toward ppb levels of MTMT, structurally related sulfur compounds, and other metal-coordinating odorants (e.g., strong-smelling trans-cyclooctene) among >125 compounds tested. Copper chelator (tetraethylenepentamine, TEPA) addition abolishes the response of MOR244-3 to MTMT. Histidine 105, located in the third transmembrane domain near the extracellular side, is proposed to serve as a copper-coordinating residue mediating interaction with the MTMT-copper complex. Electrophysiological recordings of the OSNs in the septal organ, abundantly expressing MOR244-3, revealed neurons responding to MTMT. Addition of copper ion and chelator TEPA respectively enhanced and reduced the response of some MTMT-responding neurons, demonstrating the physiological relevance of copper ion in olfaction. In a behavioral context, an olfactory discrimination assay showed that mice injected with TEPA failed to discriminate MTMT. This report establishes the role of metal ions in mammalian odor detection by ORs.


Asunto(s)
Cobre/fisiología , Odorantes , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/química , Atractivos Sexuales/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Sulfuros/metabolismo , Secuencia de Aminoácidos , Animales , Cationes/farmacología , Quelantes/farmacología , AMP Cíclico/análisis , Relación Dosis-Respuesta a Droga , Etilenodiaminas/farmacología , Femenino , Histidina/química , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Conformación Proteica , Estructura Terciaria de Proteína , Receptores Odorantes/genética , Receptores Odorantes/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato , Compuestos de Azufre/metabolismo
17.
Nat Commun ; 15(1): 2911, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575590

RESUMEN

The roles of Aß low-threshold mechanoreceptors (LTMRs) in transmitting mechanical hyperalgesia and in alleviating chronic pain have been of great interest but remain contentious. Here we utilized intersectional genetic tools, optogenetics, and high-speed imaging to specifically examine functions of SplitCre labeled mouse Aß-LTMRs in this regard. Genetic ablation of SplitCre-Aß-LTMRs increased mechanical nociception but not thermosensation in both acute and chronic inflammatory pain conditions, indicating a modality-specific role in gating mechanical nociception. Local optogenetic activation of SplitCre-Aß-LTMRs triggered nociception after tissue inflammation, whereas their broad activation at the dorsal column still alleviated mechanical hypersensitivity of chronic inflammation. Taking all data into consideration, we propose a model, in which Aß-LTMRs play distinctive local and global roles in transmitting or alleviating mechanical hyperalgesia of chronic pain, respectively. Our model suggests a strategy of global activation plus local inhibition of Aß-LTMRs for treating mechanical hyperalgesia.


Asunto(s)
Dolor Crónico , Hiperalgesia , Ratones , Animales , Hiperalgesia/genética , Nocicepción , Mecanorreceptores/fisiología , Inflamación/genética
18.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36203543

RESUMEN

Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.

19.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38234815

RESUMEN

Sleep disturbances are prevalent in children with autism spectrum disorder (ASD) and have a major impact on the quality of life. Strikingly, sleep problems are positively correlated with the severity of ASD symptoms, such as memory impairment. However, the neural mechanisms underlying sleep disturbances and cognitive deficits in ASD are largely unexplored. Here, we show that non-rapid eye movement sleep (NREMs) is highly fragmented in the 16p11.2 deletion mouse model of ASD. The degree of sleep fragmentation is reflected in an increased number of calcium transients in the activity of locus coeruleus noradrenergic (LC-NE) neurons during NREMs. Exposure to a novel environment further exacerbates sleep disturbances in 16p11.2 deletion mice by fragmenting NREMs and decreasing rapid eye movement sleep (REMs). In contrast, optogenetic inhibition of LC-NE neurons and pharmacological blockade of noradrenergic transmission using clonidine reverse sleep fragmentation. Furthermore, inhibiting LC-NE neurons restores memory. Rabies-mediated unbiased screening of presynaptic neurons reveals altered connectivity of LC-NE neurons with sleep- and memory regulatory brain regions in 16p11.2 deletion mice. Our findings demonstrate that heightened activity of LC-NE neurons and altered brain-wide connectivity underlies sleep fragmentation in 16p11.2 deletion mice and identify a crucial role of the LC-NE system in regulating sleep stability and memory in ASD.

20.
bioRxiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38948716

RESUMEN

Distinct basolateral amygdala (BLA) cell populations influence emotional responses in manners thought important for anxiety and anxiety disorders. The BLA contains numerous cell types which can broadcast information into structures that may elicit changes in emotional states and behaviors. BLA excitatory neurons can be divided into two main classes, one of which expresses Ppp1r1b (encoding protein phosphatase 1 regulatory inhibitor subunit 1B) which is downstream of the genes encoding the D1 and D2 dopamine receptors (drd1 and drd2 respectively). The role of drd1+ or drd2+ BLA neurons in learned and unlearned emotional responses is unknown. Here, we identified that the drd1+ and drd2+ BLA neuron populations form two parallel pathways for communication with the ventral striatum. These neurons arise from the basal nucleus of the BLA, innervate the entire space of the ventral striatum, and are capable of exciting ventral striatum neurons. Further, through three separate behavioral assays, we found that the drd1+ and drd2+ parallel pathways bidirectionally influence both learned and unlearned emotional states when they are activated or suppressed, and do so depending upon where they synapse in the ventral striatum - with unique contributions of drd1+ and drd2+ circuitry on negative emotional states. Overall, these results contribute to a model whereby parallel, genetically-distinct BLA to ventral striatum circuits inform emotional states in a projection-specific manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA