Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892073

RESUMEN

Xanthomonas oryzae pv. oryzicola (Xoc) is a notorious plant pathogen. Like most bacterial pathogens, Xoc has evolved a complex regulatory network to modulate the expression of various genes related to pathogenicity. Here, we have identified TfmR, a transcriptional regulator belonging to the TetR family, as a key player in the virulence mechanisms of this phytopathogenic bacterium. We have demonstrated genetically that tfmR is involved in the hypersensitive response (HR), pathogenicity, motility and extracellular polysaccharide production of this phytopathogenic bacterium. Our investigations extended to exploring TfmR's interaction with RpfG and HrpX, two prominent virulence regulators in Xanthomonas species. We found that TfmR directly binds to the promoter region of RpfG, thereby positively regulating its expression. Notably, constitutive expression of RpfG partly reinstates the pathogenicity compromised by TfmR-deletion mutants. Furthermore, our studies revealed that TfmR also exerts direct positive regulation on the expression of the T3SS regulator HrpX. Similar to RpfG, sustained expression of HrpX partially restores the pathogenicity of TfmR-deletion mutants. These findings underscore TfmR's multifaceted role as a central regulator governing key virulence pathways in Xoc. Importantly, our research sheds light on the intricate molecular mechanisms underlying the regulation of pathogenicity in this plant pathogen.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas , Regiones Promotoras Genéticas , Factores de Transcripción , Xanthomonas , Xanthomonas/patogenicidad , Xanthomonas/genética , Xanthomonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia/genética , Enfermedades de las Plantas/microbiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Oryza/microbiología
2.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569437

RESUMEN

Over half of the world's population relies on rice as their staple food. The brown planthopper (Nilaparvata lugens Stål, BPH) is a significant insect pest that leads to global reductions in rice yields. Breeding rice varieties that are resistant to BPH has been acknowledged as the most cost-effective and efficient strategy to mitigate BPH infestation. Consequently, the exploration of BPH-resistant genes in rice and the development of resistant rice varieties have become focal points of interest and research for breeders. In this review, we summarized the latest advancements in the localization, cloning, molecular mechanisms, and breeding of BPH-resistant rice. Currently, a total of 70 BPH-resistant gene loci have been identified in rice, 64 out of 70 genes/QTLs were mapped on chromosomes 1, 2, 3, 4, 6, 8, 10, 11, and 12, respectively, with 17 of them successfully cloned. These genes primarily encode five types of proteins: lectin receptor kinase (LecRK), coiled-coil-nucleotide-binding-leucine-rich repeat (CC-NB-LRR), B3-DNA binding domain, leucine-rich repeat domain (LRD), and short consensus repeat (SCR). Through mediating plant hormone signaling, calcium ion signaling, protein kinase cascade activation of cell proliferation, transcription factors, and miRNA signaling pathways, these genes induce the deposition of callose and cell wall thickening in rice tissues, ultimately leading to the inhibition of BPH feeding and the formation of resistance mechanisms against BPH damage. Furthermore, we discussed the applications of these resistance genes in the genetic improvement and breeding of rice. Functional studies of these insect-resistant genes and the elucidation of their network mechanisms establish a strong theoretical foundation for investigating the interaction between rice and BPH. Furthermore, they provide ample genetic resources and technical support for achieving sustainable BPH control and developing innovative insect resistance strategies.

3.
Plant J ; 107(4): 1084-1101, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34101285

RESUMEN

Bacterial leaf streak (BLS) is a major bacterial disease of rice. Utilization of host genetic resistance has become one of the most important strategies for controlling BLS. However, only a few resistance genes have been characterized. Previously, a recessive BLS resistance gene bls1 was roughly mapped on chromosome 6. Here, we further delineated bls1 to a 21 kb region spanning four genes. Genetic analysis confirmed that the gene encoding a mitogen-activated protein kinase (OsMAPK6) is the target of the allelic genes BLS1 and bls1. Overexpression of BLS1 weakened resistance to the specific Xanthomonas oryzae pv. oryzicola (Xoc) strain JZ-8, while low expression of bls1 increased resistance. However, both overexpression of BLS1 and low expression of bls1 could increase no-race-specific broad-spectrum resistance. These results indicate that BLS1 and bls1 negatively regulate race-specific resistance to Xoc strain JZ-8 but positively and negatively control broad-spectrum resistance, respectively. Subcellular localization demonstrated that OsMAPK6 was localized in the nucleus. RGA4, which is known to mediate resistance to Xoc, is the potential target of OsMAPK6. Overexpression of BLS1 and low expression of bls1 showed increase in salicylic acid and induced expression of defense-related genes, simultaneously increasing broad-spectrum resistance. Moreover, low expression of bls1 showed increase an in jasmonic acid and abscisic acid, in company with an increase in resistance to Xoc strain JZ-8. Collectively, our study provides new insights into the understanding of BLS resistance and facilitates the development of rice host-resistant cultivars.


Asunto(s)
Proteína Quinasa 6 Activada por Mitógenos/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Mapeo Cromosómico , Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/fisiología , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Mutación , Oryza/genética , Oxilipinas/metabolismo , Filogenia , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Xanthomonas/patogenicidad
4.
J Basic Microbiol ; 59(11): 1082-1091, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31544274

RESUMEN

Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive diseases affecting rice worldwide. However, little is known about the population structure of this organism in Guangxi Zhuang Autonomous Region, South China. Here, pathotypic and DNA fingerprint analyses were conducted to characterize the isolates of Xoo collected from rice leaves in five districts of the region from 2013 to 2016. Their pathogenicity was tested by leaf clipping, and the DNA fingerprints were analyzed by repetitive sequence-based polymerase chain reaction and endogenous insertion sequence element-based polymerase chain reaction assays using the repetitive extragenic palindromic sequence and enterobacterial repetitive intergenic consensus primers, respectively. Pathogenicity assays of 70 representative isolates were conducted using a series of near-isogenic lines and two new pathotypes were identified. All the pathotypes were found to be incompatible with xa5 and Xa7. One pathotype was virulent to Xa14, Xa21, and Xa23, whereas another virulent to Xa21 and Xa23, but incompatible with Xa14. A dendrogram generated for the data sets obtained from DNA fingerprinting suggested the prevalence of high genetic diversity of Xoo throughout Guangxi, and no association between the molecular haplotypes and pathotypes was identified.


Asunto(s)
Oryza/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Xanthomonas/patogenicidad , China , Dermatoglifia del ADN , Variación Genética , Haplotipos , Hojas de la Planta/microbiología , Virulencia
5.
J Integr Plant Biol ; 60(4): 323-340, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29330900

RESUMEN

The ability of a plant to produce grain, fruit, or forage depends ultimately on photosynthesis. There have been few attempts, however, to study microRNAs, which are a class of endogenous small RNAs post-transcriptionally programming gene expression, in relation to photosynthetic traits. We focused on miR408, one of the most conserved plant miRNAs, and overexpressed it in parallel in Arabidopsis, tobacco, and rice. The transgenic plants all exhibited increased copper content in the chloroplast, elevated abundance of plastocyanin, and an induction of photosynthetic genes. By means of gas exchange and optical spectroscopy analyses, we showed that higher expression of miR408 leads to enhanced photosynthesis through improving efficiency of irradiation utilization and the capacity for carbon dioxide fixation. Consequently, miR408 hyper-accumulating plants exhibited higher rate of vegetative growth. An enlargement of seed size was also observed in all three species overproducing miR408. Moreover, we conducted a 2-year-two-location field trial and observed miR408 overexpression in rice significantly increased yield, which was primarily attributed to an elevation in grain weight. Taken together, these results demonstrate that miR408 is a positive regulator of photosynthesis and that its genetic engineering is a promising route for enhancing photosynthetic performance and yield in diverse plants.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , MicroARNs/metabolismo , Fotosíntesis/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Oryza/genética , Plantas Modificadas Genéticamente , Plastocianina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/genética
6.
Front Plant Sci ; 15: 1390603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911983

RESUMEN

Rice, a critical staple on a global scale, faces escalating challenges in yield preservation due to the rising prevalence of abiotic and biotic stressors, exacerbated by frequent climatic fluctuations in recent years. Moreover, the scorching climate prevalent in the rice-growing regions of South China poses obstacles to the cultivation of good-quality, heavy-grain varieties. Addressing this dilemma requires the development of resilient varieties capable of withstanding multiple stress factors. To achieve this objective, our study employed the broad-spectrum blast-resistant line Digu, the brown planthopper (BPH)-resistant line ASD7, and the heavy-grain backbone restorer lines Fuhui838 (FH838) and Shuhui527 (SH527) as parental materials for hybridization and multiple crossings. The incorporation of molecular markers facilitated the rapid pyramiding of six target genes (Pi5, Pita, Pid2, Pid3, Bph2, and Wxb ). Through a comprehensive evaluation encompassing blast resistance, BPH resistance, cold tolerance, grain appearance, and quality, alongside agronomic trait selection, a promising restorer line, Guihui5501 (GH5501), was successfully developed. It demonstrated broad-spectrum resistance to blast, exhibiting a resistance frequency of 77.33% against 75 artificially inoculated isolates, moderate resistance to BPH (3.78 grade), strong cold tolerance during the seedling stage (1.80 grade), and characteristics of heavy grains (1,000-grain weight reaching 35.64 g) with good grain quality. The primary rice quality parameters for GH5501, with the exception of alkali spreading value, either met or exceeded the second-grade national standard for premium edible rice varieties, signifying a significant advancement in the production of good-quality heavy-grain varieties in the southern rice-growing regions. Utilizing GH5501, a hybrid combination named Nayou5501, characterized by high yield, good quality, and resistance to multiple stresses, was bred and received approval as a rice variety in Guangxi in 2021. Furthermore, genomic analysis with gene chips revealed that GH5501 possessed an additional 20 exceptional alleles, such as NRT1.1B for efficient nitrogen utilization, SKC1 for salt tolerance, and STV11 for resistance to rice stripe virus. Consequently, the restorer line GH5501 could serve as a valuable resource for the subsequent breeding of high-yielding, good-quality, and stress-tolerant hybrid rice varieties.

7.
Plants (Basel) ; 12(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631123

RESUMEN

Grain shape is an important agronomic trait directly associated with yield in rice. In order to explore new genes related to rice grain shape, a high-density genetic map containing 2193 Bin markers (526957 SNP) was constructed by whole-genome resequencing of 208 recombinant inbred (RILs) derived from a cross between ZP37 and R8605, with a total genetic distance of 1542.27 cM. The average genetic distance between markers was 0.76 cM, and the physical distance was 201.29 kb. Quantitative trait locus (QTL) mapping was performed for six agronomic traits related to rice grain length, grain width, length-to-width ratio, thousand-grain weight, grain cross-sectional area, and grain perimeter under three different environments. A total of 39 QTLs were identified, with mapping intervals ranging from 8.1 kb to 1781.6 kb and an average physical distance of 517.5 kb. Among them, 15 QTLs were repeatedly detected in multiple environments. Analysis of the genetic effects of the identified QTLs revealed 14 stable genetic loci, including three loci that overlapped with previously reported gene positions, and the remaining 11 loci were newly identified loci associated with two or more environments or traits. Locus 1, Locus 3, Locus 10, and Locus 14 were novel loci exhibiting pleiotropic effects on at least three traits and were detected in multiple environments. Locus 14, with a contribution rate greater than 10%, influenced grain width, length-to-width ratio, and grain cross-sectional area. Furthermore, pyramiding effects analysis of three stable genetic loci showed that increasing the number of QTL could effectively improve the phenotypic value of grain shape. Collectively, our findings provided a theoretical basis and genetic resources for the cloning, functional analysis, and molecular breeding of genes related to rice grain shape.

8.
Microbiology (Reading) ; 153(Pt 3): 737-746, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17322194

RESUMEN

Xanthomonas campestris pathovar campestris (Xcc) is the causal agent of black rot disease in cruciferous plants. The extracellular polysaccharide (EPS) produced by Xcc is an important pathogenicity factor and also has a range of industrial uses. In preliminary work a number of transposon-mediated insertion mutants in Xcc with defects in EPS production were identified. Here, one of these mutated loci was investigated in detail. Six ORFs within the locus (ORFs XC3811-3816) were disrupted by plasmid integration. Mutation of XC3813, XC3814 or XC3815 resulted in significantly reduced EPS production and significantly reduced virulence on the host plant Chinese radish (Raphanus sativus). The EPS production and virulence of XC3813, XC3814 and XC3815 mutants could be restored by intact XC3813, XC3814 and XC3815 genes, respectively, when provided in trans. Although bioinformatic analysis suggested a role for XC3814 and XC3815 in lipopolysaccharide biosynthesis, the lipopolysaccharides produced by the mutants were indistinguishable from those of the wild-type, as judged by electrophoretic mobility in SDS-polyacrylamide gels. These results reveal that XC3813, XC3814 and XC3815 comprise a novel gene cluster involved in EPS production and virulence of Xcc.


Asunto(s)
Polisacáridos Bacterianos/biosíntesis , Raphanus/microbiología , Xanthomonas campestris/genética , Electroforesis en Gel de Poliacrilamida , Prueba de Complementación Genética , Lipopolisacáridos/análisis , Mutagénesis Insercional , Sistemas de Lectura Abierta/genética , Enfermedades de las Plantas/microbiología , Plásmidos/genética , Polisacáridos Bacterianos/genética , Virulencia/genética , Xanthomonas campestris/metabolismo , Xanthomonas campestris/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA