RESUMEN
Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/prevención & control , Progresión de la Enfermedad , Ganglios Espinales , Ganglios Simpáticos , Ratones , Neuronas/fisiología , Placa Aterosclerótica/prevención & controlRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes persistent infection in the host by encoding a vast network of proteins that aid immune evasion. One of these targeted innate immunity pathways is the cGAS-STING pathway, which inhibits the reactivation of KSHV from latency. Previously, we identified multiple cGAS/STING inhibitors encoded by KSHV, suggesting that the counteractions of this pathway by viral proteins are critical for maintaining a successful KSHV life cycle. However, the detailed mechanisms of how these viral proteins block innate immunity and facilitate KSHV lytic replication remain largely unknown. In this study, we report that ORF48, a previously identified negative regulator of the cGAS/STING pathway, is required for optimal KSHV lytic replication. We used both siRNA and deletion-based systems to evaluate the importance of intact ORF48 in the KSHV lytic cycle. In both systems, loss of ORF48 resulted in defects in lytic gene transcription, lytic protein expression, viral genome replication and infectious virion production. ORF48 genome deletion caused more robust and global repression of the KSHV transcriptome, possibly due to the disruption of RTA promoter activity. Mechanistically, overexpressed ORF48 was found to colocalize and interact with endogenous STING in HEK293 cells. Endogenous ORF48 and STING interactions were also detected in reactivated iSLK.219 cells. Compared with the control cell line, HUVEC cells stably expressing ORF48 exhibited repressed STING-dependent innate immune signaling upon ISD or diABZI treatment. However, the loss of ORF48 in our iSLK-based lytic system failed to induce IFNß production, suggesting a redundant role of ORF48 on STING signaling during the KSHV lytic phase. Thus, ORF48 is required for optimal KSHV lytic replication through additional mechanisms that need to be further explored.
Asunto(s)
Herpesvirus Humano 8 , Proteínas Virales , Replicación Viral , Herpesvirus Humano 8/fisiología , Humanos , Replicación Viral/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Inmunidad Innata , Células HEK293 , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Regulación Viral de la Expresión Génica , Latencia del Virus/fisiología , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virologíaRESUMEN
Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality, but the role played by PCV2 and bacterial and host factors contributing to this process have not been defined. Bacterial attachment is assumed to occur via specific receptor-ligand interactions between adhesins on the bacterial cell and host proteins adsorbed to the implant surface. Mass spectrometry (MS) analysis of PCV2-infected swine tracheal epithelial cells (STEC) revealed that the expression of Extracellular matrix protein (ECM) Fibronectin (Fn) increased significantly on the infected cells surface. Importantly, efficient G. parasuis serotype 4 (GPS4) adherence to STECs was imparted by interactions with Fn. Furthermore, abrogation of adherence was gained by genetic knockout of Fn, Fn and Integrin ß1 antibody blocking. Fn is frequently exploited as a receptor for bacterial pathogens. To explore the GPS4 adhesin that interacts with Fn, recombinant Fn N-terminal type I and type II domains were incubated with GPS4, and the interacting proteins were pulled down for MS analysis. Here, we show that rare lipoprotein A (RlpA) directly interacts with host Fibronectin mediating GPS4 adhesion. Finally, we found that PCV2-induced Fibronectin expression and adherence of GPS4 were prevented significantly by TGF-ß signaling pathway inhibitor SB431542. Our data suggest the RlpA-Fn interaction to be a potentially promising novel therapeutic target to combat PCV2 and GPS4 coinfection.
Asunto(s)
Circovirus , Fibronectinas , Haemophilus parasuis , Enfermedades de los Porcinos , Tráquea , Animales , Porcinos , Fibronectinas/metabolismo , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/metabolismo , Haemophilus parasuis/metabolismo , Circovirus/metabolismo , Circovirus/patogenicidad , Tráquea/virología , Tráquea/microbiología , Tráquea/metabolismo , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/virología , Infecciones por Haemophilus/metabolismo , Adhesión Bacteriana , Serogrupo , Coinfección/virología , Coinfección/microbiología , Infecciones por Pasteurellaceae/veterinaria , Infecciones por Pasteurellaceae/virología , Infecciones por Pasteurellaceae/microbiología , Infecciones por Pasteurellaceae/metabolismoRESUMEN
M family proteins are critical virulence determinants of Streptococci. Streptococcus equi subsp. zooepidemicus (SEZ) are Group C streptococci that cause meningitis in animals and humans. SzM, the M protein of SEZ, has been linked to SEZ brain invasion. Here, we demonstrate that SzM is important in SEZ disruption of the blood-brain barrier (BBB). SEZ release SzM-bound membrane vesicles (MVs), and endocytosis of these vesicles by human brain endothelial microvascular cells (hBMECs) results in SzM-dependent cytotoxicity. Furthermore, administration of SzM-bound MVs disrupted the murine BBB. A CRISPR screen revealed that SzM cytotoxicity in hBMECs depends on PTEN-related activation of autophagic cell death. Pharmacologic inhibition of PTEN activity prevented SEZ disruption of the murine BBB and delayed mortality. Our data show that MV delivery of SzM to host cells plays a key role in SEZ pathogenicity and suggests that MV delivery of streptococcal M family proteins is likely a common streptococcal virulence mechanism.
Asunto(s)
Muerte Celular Autofágica , Infecciones Estreptocócicas , Streptococcus equi , Humanos , Animales , Ratones , Barrera Hematoencefálica , Antígenos Bacterianos , Streptococcus , Células EndotelialesRESUMEN
GntR transcription factor of Streptococcus suis serotype 2 (SS2) is a potential substrate protein of STK, but the regulation mechanisms of GntR phosphorylation are still unclear. This study confirmed that STK phosphorylated GntR in vivo, and in vitro phosphorylation experiments showed that STK phosphorylated GntR at Ser-41. The phosphomimetic strain (GntR-S41E) had significantly reduced lethality in mice and reduced bacterial load in the blood, lung, liver, spleen, and brain of infected mice compared to wild-type (WT) SS2. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments demonstrated that the promoter of nox was bound by GntR. The phosphomimetic protein GntR-S41E cannot bind to the promoter of nox, and the nox transcription levels were significantly reduced in the GntR-S41E mutant compared to WT SS2. The virulence in mice and the ability to resist oxidative stress of the GntR-S41E strain were restored by complementing transcript levels of nox. NOX is an NADH oxidase that catalyzes the oxidation of NADH to NAD+ with the reduction of oxygen to water. We found that NADH is likely accumulated under oxidative stress in the GntR-S41E strain, and higher NADH levels resulted in increased amplified ROS killing. In total, we report GntR phosphorylation could inhibit the transcription of nox, which impaired the ability of SS2 to resist oxidative stress and virulence.
Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Animales , Ratones , Virulencia , Streptococcus suis/genética , Fosforilación , NAD/metabolismo , Estrés Oxidativo , Infecciones Estreptocócicas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
T1 image is a widely collected imaging sequence in various neuroimaging datasets, but it is rarely used to construct an individual-level brain network. In this study, a novel individualized radiomics-based structural similarity network was proposed from T1 images. In detail, it used voxel-based morphometry to obtain the preprocessed gray matter images, and radiomic features were then extracted on each region of interest in Brainnetome atlas, and an individualized radiomics-based structural similarity network was finally built using the correlational values of radiomic features between any pair of regions of interest. After that, the network characteristics of individualized radiomics-based structural similarity network were assessed, including graph theory attributes, test-retest reliability, and individual identification ability (fingerprinting). At last, two representative applications for individualized radiomics-based structural similarity network, namely mild cognitive impairment subtype discrimination and fluid intelligence prediction, were exemplified and compared with some other networks on large open-source datasets. The results revealed that the individualized radiomics-based structural similarity network displays remarkable network characteristics and exhibits advantageous performances in mild cognitive impairment subtype discrimination and fluid intelligence prediction. In summary, the individualized radiomics-based structural similarity network provides a distinctive, reliable, and informative individualized structural brain network, which can be combined with other networks such as resting-state functional connectivity for various phenotypic and clinical applications.
Asunto(s)
Encéfalo , Radiómica , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , NeuroimagenRESUMEN
BACKGROUND: Claudin 18.2 (CLDN18.2) is a highly anticipated target for solid tumor therapy, especially in advanced gastric carcinoma and pancreatic carcinoma. The T cell engager targeting CLDN18.2 represents a compelling strategy for enhancing anti-cancer efficacy. METHODS: Based on the in-house screened anti-CLDN18.2 VHH, we have developed a novel tri-specific T cell engager targeting CLDN18.2 for gastric and pancreatic cancer immunotherapy. This tri-specific antibody was designed with binding to CLDN18.2, human serum albumin (HSA) and CD3 on T cells. RESULTS: The DR30318 demonstrated binding affinity to CLDN18.2, HSA and CD3, and exhibited T cell-dependent cellular cytotoxicity (TDCC) activity in vitro. Pharmacokinetic analysis revealed a half-life of 22.2-28.6 h in rodents and 41.8 h in cynomolgus monkeys, respectively. The administration of DR30318 resulted in a slight increase in the levels of IL-6 and C-reactive protein (CRP) in cynomolgus monkeys. Furthermore, after incubation with human PBMCs and CLDN18.2 expressing cells, DR30318 induced TDCC activity and the production of interleukin-6 (IL-6) and interferon-gamma (IFN-γ). Notably, DR30318 demonstrated significant tumor suppression effects on gastric cancer xenograft models NUGC4/hCLDN18.2 and pancreatic cancer xenograft model BxPC3/hCLDN18.2 without affecting the body weight of mice.
Asunto(s)
Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Ratones , Animales , Linfocitos T , Interleucina-6 , Macaca fascicularis/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Gástricas/patología , Inmunoterapia , Claudinas/metabolismoRESUMEN
Streptococcus suis serotype 2 (SS2) is a major zoonotic pathogen resulting in manifestations as pneumonia and septic shock. The upper respiratory tract is typically thought to be the main colonization and entry site of SS2 in pigs, but the mechanism through which it penetrates the respiratory barrier is still unclear. In this study, a mutant with low invasive potential to swine tracheal epithelial cells (STECs) was screened from the TnYLB-1 transposon insertion mutant library of SS2, and the interrupted gene was identified as autolysin (atl). Compared to wild-type (WT) SS2, Δatl mutant exhibited lower ability to penetrate the tracheal epithelial barrier in a mouse model. Purified Atl also enhanced SS2 translocation across STEC monolayers in Transwell inserts. Furthermore, Atl redistributed the tight junctions (TJs) in STECs through myosin light chain kinase (MLCK) signaling, which led to increased barrier permeability. Using mass spectrometry, co-immunoprecipitation (co-IP), pull-down, bacterial two-hybrid and saturation binding experiments, we showed that Atl binds directly to vimentin. CRISPR/Cas9-targeted deletion of vimentin in STECs (VIM KO STECs) abrogated the capacity of SS2 to translocate across the monolayers, SS2-induced phosphorylation of myosin II regulatory light chain (MLC) and MLCK transcription, indicating that vimentin is indispensable for MLCK activation. Consistently, vimentin null mice were protected from SS2 infection and exhibited reduced tracheal and lung injury. Thus, MLCK-mediated epithelial barrier opening caused by the Atl-vimentin interaction is found to be likely the key mechanism by which SS2 penetrates the tracheal epithelium.
Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Animales , Epitelio , Ratones , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Porcinos , Uniones Estrechas/metabolismo , Vimentina/genética , Vimentina/metabolismoRESUMEN
Glaesserella parasuis (G. parasuis), the primary pathogen of Glässer's disease, colonizes the upper respiratory tract and can break through the epithelial barrier of the respiratory tract, leading to lung infection. However, the underlying mechanisms for this adverse effect remain unclear. The G. parasuis serotype 5 SQ strain (HPS5-SQ) infection decreased the integrity of piglets' lung Occludin and Claudin-1. Autophagy regulates the function of the epithelial barrier and tight junction proteins (TJs) expression. We tested the hypothesis that HPS5-SQ breaking through the porcine respiratory epithelial barrier was linked to autophagy and Claudin-1 degradation. When HPS5-SQ infected swine tracheal epithelial cells (STEC), autophagosomes encapsulated, and autolysosomes degraded oxidatively stressed mitochondria covered with Claudin-1. Furthermore, we found that autophagosomes encapsulating mitochondria resulted in cell membrane Claudin-1 being unable to be replenished after degradation and damaged the respiratory tract epithelial barrier. In conclusion, G. parasuis serotype 5 breaks through the porcine respiratory epithelial barrier by inducing autophagy and interrupting cell membrane Claudin-1 replenishment, clarifying the mechanism of the G. parasuis infection and providing a new potential target for drug design and vaccine development.
Asunto(s)
Infecciones por Haemophilus , Haemophilus parasuis , Enfermedades de los Porcinos , Porcinos , Animales , Claudina-1/metabolismo , Ocludina/metabolismo , Serogrupo , Haemophilus parasuis/metabolismo , Autofagia , Membrana Celular , Proteínas de Uniones Estrechas/metabolismo , TráqueaRESUMEN
Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe(-/-) mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4(+) T cells, generated CD4(+), CD8(+), T regulatory (Treg) effector and central memory cells, converted naive CD4(+) T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin ß receptors (VSMC-LTßRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTßRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe(-/-)Ltbr(-/-) and to a similar extent in aged Apoe(-/-)Ltbr(fl/fl)Tagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTßRs participate in atherosclerosis protection via ATLOs.
Asunto(s)
Envejecimiento/inmunología , Aterosclerosis/inmunología , Receptor beta de Linfotoxina/metabolismo , Miocitos del Músculo Liso/fisiología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Adventicia/inmunología , Envejecimiento/genética , Animales , Aorta/patología , Apolipoproteínas E/genética , Aterosclerosis/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Células Cultivadas , Coristoma/inmunología , Memoria Inmunológica , Activación de Linfocitos/genética , Tejido Linfoide/inmunología , Receptor beta de Linfotoxina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas Musculares/genéticaRESUMEN
The progression of liver fibrosis is determined by the interaction of damaged hepatocytes, active hepatic stellate cells, and macrophages, contributing to the development of oxidative stress and inflammatory environments within the liver. Unfortunately, the current pharmacological treatment for liver fibrosis is limited by its inability to regulate inflammation and oxidative stress concurrently. In this study, we developed a cell membrane biomaterial for the treatment of liver fibrosis, which we designated as PM. PM is a biomimetic nanomaterial constructed by encapsulating polydopamine (PDA) with a macrophage membrane (MM). It is hypothesized that PM nanoparticles (NPs) can successfully target the site of inflammation, simultaneously inhibit inflammation, and scavenge reactive oxygen species (ROS). In vitro experiments demonstrated that PM NPs exhibited strong antioxidant properties and the ability to neutralize pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß). Moreover, the capacity of PM NPs to safeguard cells from oxidative stress and their anti-inflammatory efficacy in an inflammatory model were validated in subsequent cellular experiments. Additionally, PM NPs exhibited a high biocompatibility. In a mouse model of hepatic fibrosis, PM NPs were observed to aggregate efficiently in the fibrotic liver, displaying excellent antioxidant and anti-inflammatory properties. Notably, PM NPs exhibited superior targeting, anti-inflammatory, and ROS scavenging abilities in inflamed tissues compared to MM, PDA, or erythrocyte membrane-encapsulated PDA. Under the synergistic effect of anti-inflammation and antioxidant, PM NPs produced significant therapeutic effects on liver fibrosis in mice. In conclusion, the synergistic alleviation of inflammation and ROS scavenging by this specially designed nanomaterial, PM NPs, provides valuable insights for the treatment of liver fibrosis and other inflammatory- or oxidative stress-related diseases.
Asunto(s)
Antioxidantes , Indoles , Inflamación , Cirrosis Hepática , Macrófagos , Nanopartículas , Estrés Oxidativo , Polímeros , Especies Reactivas de Oxígeno , Animales , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Indoles/química , Indoles/farmacología , Indoles/administración & dosificación , Ratones , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Inflamación/tratamiento farmacológico , Inflamación/patología , Humanos , Masculino , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Células RAW 264.7 , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Citocinas/metabolismoRESUMEN
BACKGROUND: Early childhood caries (ECC) is a challenge for pediatric dentists all over the world, and dietary factor is an important factor affecting the occurrence of ECC. Currently, there is limited research on the impact of dietary nutrient intake from Chinese diets on ECC. The purpose of this study is to explore the correlation of dietary nutrients intake with ECC and caries activity (CA) among children aged 3-5 years, and to provide dietary guidance to slow down the occurrence and development of ECC. METHODS: A cross-sectional study was conducted in 2022. A total of 155 children were divided into three groups: caries-free group, ECC group and Severe early childhood caries (SECC) group according to the caries statues. And according to the caries activity test (CAT) value, they were also divided into three group: low CA group (L-CA), middle CA group (M-CA) and high CA group (H-CA). The 24-hour dietary intake information was collected by mobile phone application (APP). The intake of children's daily dietary nutrients were calculated referring to "China Food Composition Tables". RESULTS: In this study, 17, 39,and 99 children were diagnosed with caries-free, ECC, and SECC. There were 33, 36, and 86 children diagnosed with L-CA, M-CA, and H-CA. The risk of ECC was increased with the intake of cholesterol(OR = 1.005) and magnesium (OR = 1.026) and decreased with the intake of iron (OR = 0.770). The risk of SECC was increased with the intake of cholesterol (OR = 1.003). The risk of high CA was increased with the intake of cholesterol (OR = 1.002). The combined application of dietary total calories, carbohydrate, cholesterol, sodium, magnesium and selenium in the diagnosis of ECC had an area under ROC curve of 0.741. CONCLUSIONS: The increased dietary cholesterol intake may be a common risk factor for ECC and high CA in children aged 3-5. The combined application of dietary intake of total calories, carbohydrate, cholesterol, sodium, magnesium and selenium has a higher predictive value for the occurrence of ECC.
Asunto(s)
Caries Dental , Humanos , Estudios Transversales , Preescolar , Caries Dental/epidemiología , Caries Dental/etiología , Caries Dental/prevención & control , Masculino , Femenino , China/epidemiología , Dieta , Nutrientes/administración & dosificación , Ingestión de EnergíaRESUMEN
Periodontitis is a chronic inflammatory destructive disease occurring in periodontal supporting tissues. Atherosclerosis(AS) is one of the most common cardiovascular diseases. Periodontitis can promote the development and progression of AS. Macrophage polarization is closely related to the development and progression of the above two diseases, respectively. The purpose of this animal study was to evaluate the effect of periodontitis on aortic lesions in atherosclerotic mice and the role of macrophage polarization in this process. 45 ApoE-/-male mice were randomly divided into three groups: control (NC), atherosclerosis (AS), and atherosclerosis with periodontitis (AS + PD). Micro CT, serological testing and pathological testing(hematoxylin-eosin staining, oil red O staining and Masson staining) were used for Evaluate the modeling situation. Immunohistochemistry(IHC) and immunofluorescence(IF) were performed to evaluate macrophage content and macrophage polarization in plaques. Cytokines associated with macrophage polarization were analyzed using quantitative real-time polymerase chain reaction(qRT-PCR) and enzyme-linked immunosorbent assay(Elisa). The expression of macrophages in plaques was sequentially elevated in the NC, AS, and AS + PD groups(P < 0.001). The expression of M1 and M1-related cytokines showed the same trend(P < 0.05). The expression of M2 and M2-related cytokines showed the opposite trend(P < 0.05). The rate of M1/M2 showed that AS + PD > AS > NC. Our preliminary data support that experimental periodontitis can increase the content of macrophage in aortic plaques to exacerbate AS. Meanwhile, experimental periodontitis can increase M1 macrophages, and decrease M2 macrophages, increasing M1/M2 in the plaque.
Asunto(s)
Aterosclerosis , Citocinas , Modelos Animales de Enfermedad , Macrófagos , Periodontitis , Animales , Ratones , Periodontitis/patología , Masculino , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Reacción en Cadena en Tiempo Real de la Polimerasa , Placa Aterosclerótica , Progresión de la Enfermedad , Distribución Aleatoria , Activación de MacrófagosRESUMEN
A series of novel binuclear PNP ligands based on the cyclohexyldiamine scaffold were synthesized for this study. The experimental results showed that positioning the two PNP sites at the para-positions of the cyclohexyl framework led to a significant enhancement in the catalytic activity for selective tri/tetramerization of ethylene. The PNP/Cr(acac)3/MAO(methylaluminoxane) catalytic system exhibited relatively high catalytic activity (up to 3887.7 kg·g-1·h-1) in selective ethylene oligomerization with a total selectivity of 84.5% for 1-hexene and 1-octene at 40 °C and 50 bar. The relationship between the ligand structure and ethylene oligomerization performance was further explored using density functional theory calculations.
RESUMEN
PURPOSE: To verify the effect and mechanism of baicalein in the treatment of periodontitis through network pharmacology, molecular docking and in vitro experiments. METHODS: Firstly, multiple databases were used to predict targets of baicalein and periodontitis. And the screened key target genes of baicalein for treating periodontitis were subjected to GO and KEGG analysis; then these targets were analyzed by molecular docking techniques. In vitro experiments including CCK-8, RT-qPCR, ELISA and Immunofluorescence were conducted to validate the efficacy of baicalein in treating periodontitis. RESULTS: Seventeen key targets were screened from the databases, GO and KEGG analysis of these targets revealed that baicalein may exert therapeutic effects through regulating TNF, PI3K-Akt, HIF-1 and other signaling pathways. Molecular docking analysis showed that baicalein has good binding potential to several targets. In vitro cellular assays showed that baicalein inhibited the expression of TNF-α, MMP-9, IL-6 and MCP1 in P.g-LPS-induced macrophages at both the mRNA and protein level. And the immunofluorescence intensity of iNOS, a marker of M1 type macrophages, which mainly secretes inflammatory factors, was significantly reduced. CONCLUSION: Baicalein has the characteristics and advantages of "multicomponent, multitarget, and multipathway" in the treatment of periodontitis. In vitro cellular assays further confirmed the inhibitory effect of baicalein on the secretion of inflammatory factors of macrophages in periodontitis models, providing a theoretical basis for further study of the material basis and molecular mechanism of baicalein in the treatment of periodontal diseases.
Asunto(s)
Flavanonas , Simulación del Acoplamiento Molecular , Farmacología en Red , Periodontitis , Flavanonas/farmacología , Flavanonas/uso terapéutico , Periodontitis/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Animales , Ensayo de Inmunoadsorción Enzimática , Metaloproteinasa 9 de la Matriz/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Interleucina-6/metabolismo , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismoRESUMEN
OBJECTIVE: To compare thulium laser enucleation of the prostate (ThuLEP) with plasma kinetic resection of the prostate (PKRP) in the treatment of BPH. METHODS: We retrospectively analyzed the medical records of 160 cases of BPH treated by ThuLEP (the observation group, n = 80) or PKRP (the control group, n = 80) in our hospital from January 2021 to December 2023. We recorded the operation time, bladder irrigation time, catheter retention time, hospitalization time, postoperative complications, and pre- and postoperative maximum urinary flow rate (Qmax), residual urine volume (PVR), prostate-specific antigen (PSA) and prostate volume, followed by comparison of the data obtained between the two groups of patients. RESULTS: Compared with the controls, the patients of the observation group showed significantly shorter operation time (ï¼»67.25 ± 7.24ï¼½ vs ï¼»60.10 ± 5.15ï¼½ min, P< 0.05), bladder irrigation time (ï¼»46.90 ± 10.77ï¼½ vs ï¼»43.24 ± 6.65ï¼½ h, P< 0.05), catheterization time (ï¼»5.60 ± 1.31ï¼½ vs ï¼»5.03 ± 1.24ï¼½ d, P< 0.05) and hospitalization time (ï¼»7.31 ± 2.00ï¼½ vs ï¼»6.55 ± 1.67ï¼½ d, P< 0.05), higher Qmax (ï¼»18.50 ± 1.24ï¼½ vs ï¼»20.68 ± 1.45ï¼½ ml/s, P< 0.05), lower PVR (ï¼»12.10 ± 3.53ï¼½ vs ï¼»10.82 ± 3.10ï¼½ ml, P< 0.05), PSA (ï¼»4.60 ± 0.78ï¼½ vs ï¼»3.38 ± 0.40ï¼½ µg/L, P< 0.05) and prostate volume (ï¼»25.35 ± 6.46ï¼½ vs ï¼»20.12 ± 5.13ï¼½ ml, P< 0.05) at 3 months after surgery, but no statistically significant difference in the total incidence of postoperative complications (7.50% ï¼»6/80ï¼½ vs 5.00% ï¼»4/80ï¼½, P > 0.05). CONCLUSION: ThuLEP, with its advantages of notable effect, short operation and hospitalization time, significant improvement of urinary flow dynamics and prostate function, deserves clinical promotion for the treatment of BPH.
Asunto(s)
Terapia por Láser , Hiperplasia Prostática , Tulio , Humanos , Masculino , Hiperplasia Prostática/cirugía , Tulio/uso terapéutico , Estudios Retrospectivos , Terapia por Láser/métodos , Próstata/cirugía , Resección Transuretral de la Próstata/métodos , Resultado del Tratamiento , Complicaciones Posoperatorias , Tempo Operativo , Anciano , Antígeno Prostático Específico/sangreRESUMEN
Group B Streptococcus (GBS) can cause many serious infections and result in severe symptoms depending on the infected organs. To survive and initiate infection from the gastrointestinal tract, GBS must resist physiochemical factors, such as bile salts, a potent antibacterial compound in the intestine. We found that GBS isolated from diverse sources all possess the capability to defend bile salts and permit survival. By constructing the GBS A909 transposon mutant library (A909Tn), we identified several candidate genes that might participate in the bile salt resistance of GBS. The rodA and csbD genes were validated as relevant to bile salt resistance. The rodA gene was anticipated to be related to peptidoglycan synthesis and influence the bile salt resistance of GBS by cell wall construction. Notably, we found that the csbD gene worked as a bile salt resistance response factor and influenced several ABC transporter genes, specifically at the later growth period of GBS under bile salt stress. We further detected the marked intracellular bile salt accumulation in ΔcsbD by hydrophilic interaction chromatography-liquid chromatography/mass spectrometry (HILIC-LC/MS). Collectively, we showed a novel GBS stress response factor, csbD, contributes to bacterial survival in bile salts by sensing bile salt stress and subsequently induces transcription of transporter genes to excrete bile salts. IMPORTANCE GBS, a conditional pathogenetic colonizer of the human intestinal flora, can cause severe infectious diseases in immunocompromised patients. Therefore, it is critical to understand the factors that contribute to the resistance to bile salts, which are abundant in the intestine but harmful to bacteria. We identified rodA and csbD genes involved in bile salt resistance using a transposon insertion site sequencing (TIS-seq) based screen. The rodA gene products might be involved in peptidoglycan synthesis as important contributors to stress resistance including bile salts. However, the csbD gene conferred bile salt resistance by promoting transporter genes transcription at the later growth period of GBS in response to bile salts. These findings developed a better understanding of the stress response factor csbD on the bile salt resistance of GBS.
Asunto(s)
Ácidos y Sales Biliares , Infecciones Estreptocócicas , Humanos , Ácidos y Sales Biliares/farmacología , Peptidoglicano , Bilis , ARN , Transportadoras de Casetes de Unión a ATP , Infecciones Estreptocócicas/microbiologíaRESUMEN
Background: Complex regulation exists between tumor metabolism and M2 macrophages. Long noncoding RNAs (lncRNAs) are famous for their wide regulatory role. This study aimed to identify the lncRNAs involved in the crosstalk between tumor metabolism and M2 macrophages. Methods: The Cancer Genome Atlas was responsible for the public data. R software was responsible for the analysis of public data. Results: Based on the input expression profile, we quantified the M2 macrophage infiltration using the CIBERSORT algorithm and found that M2 macrophages were a risk factor for lung cancer. Also, we found that M2 macrophages were correlated with multiple metabolism pathways. Then, 67 lncRNAs involved in both M2 macrophages and related metabolism pathways were identified. A prognosis signature based on AC027288.3, AP001189.3, FAM30A, GAPLINC, LINC00578, and LINC01936 was established, which had good prognosis prediction ability. The clinical parameters and risk score were combined into a nomogram plot for better prediction of the patient's prognosis. A high fit of actual survival and nomogram-predicted survival was found using the calibration plot. Moreover, in low-risk patients, immunotherapy was more effective, while cisplatin and docetaxel were more effective in high-risk patients. Biological enrichment analysis indicated pathways of notch signaling, TGF-ß signaling, interferon alpha response, and interferon-gamma response were activated in the high-risk group. Meanwhile, the risk score was associated with tumor metabolism and M2 macrophages. Also, we found that the promoting effect of CAPLINC on M2 macrophage polarization might act through multiple metabolism pathways. Conclusions: Our result can provide new insights into the interaction between M2 macrophages and tumor metabolism, as well as the involved lncRNAs, which can provide the direction for future studies.
Asunto(s)
Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Pronóstico , Transducción de Señal/genéticaRESUMEN
Streptococcus suis serotype 2 (SS2) frequently colonizes the swine upper respiratory tract and can cause Streptococcal disease in swine with clinical manifestations of pneumonia, meningitis, and septicemia. Previously, we have shown that vimentin, a kind of intermediate filament protein, is involved in the penetration of SS2 through the tracheal epithelial barrier. The initiation of invasive disease is closely related to SS2-induced excessive local inflammation; however, the role of vimentin in airway epithelial inflammation remains unclear. Here, we show that vimentin deficient mice exhibit attenuated lung injury, diminished production of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and the IL-8 homolog, keratinocyte-derived chemokine (KC), and substantially reduced neutrophils in the lungs following intranasal infection with SS2. We also found that swine tracheal epithelial cells (STEC) without vimentin show decreased transcription of IL-6, TNF-α, and IL-8. SS2 infection caused reassembly of vimentin in STEC, and pharmacological disruption of vimentin filaments prevented the transcription of those proinflammatory cytokines. Furthermore, deficiency of vimentin failed to increase the transcription of nucleotide oligomerization domain protein 2 (NOD2), which is known to interact with vimentin, and the phosphorylation of NF-κB protein p65. This study provides insights into how vimentin promotes excessive airway inflammation, thereby exacerbating airway injury and SS2-induced systemic infection.
Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Enfermedades de los Porcinos , Animales , Ratones , Citocinas/genética , Epitelio/patología , Inflamación/veterinaria , Interleucina-6 , Interleucina-8 , Filamentos Intermedios/patología , Infiltración Neutrófila , Serogrupo , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/patología , Porcinos , Tráquea/patología , Factor de Necrosis Tumoral alfa , Vimentina/genéticaRESUMEN
BACKGROUND AND OBJECTIVE: Periodontitis is immune inflammatory disease, atherosclerosis (AS) and chronic kidney disease (CKD) are two common systemic diseases. Periodontitis promotes AS and CKD, and CKD interacts with AS. The objective of this animal study was to evaluate the changes of kidney when periodontitis and atherosclerosis exist separately and the degenerative effects of periodontitis on the kidney in atherosclerotic mice. MATERIALS AND METHODS: A total of 40 male Apoe-/- mice were randomly divided into four groups: control (NC), periodontitis (PD), AS and AS with PD (AS + PD). AS was induced by high-fat diet feeding, and PD was induced by injection of Porphyromonas gingivalis-Lipopolysaccharide (P.g-LPS) (endotoxin suspension) into the buccal side of mouse maxillary molars. The right maxilla of mice was scanned with micro-CT to evaluate alveolar bone loss; aortic tissue was stained with HE and Oil-Red O to evaluate arterial plaque formation; serum was collected to detect the changes of blood lipids and serum renal function parameters (blood urea nitrogen [BUN], serum creatinine [Scr]); renal histopathological changes were evaluated by HE staining (glomerular and tubular damage scores), PAS staining (glomerular Mesangial matrix index) and Masson staining (percentage of renal fibrosis area); qRT-PCR and ELISA were used to evaluate the expression of renal inflammatory cytokines (tumor necrosis factor-α, Interleukin-1ß, neutrophil surface marker Ly6G). RESULTS: The amount of alveolar bone loss: PD group was significantly higher than NC group (p < .05); AS + PD group was higher than PD group, the difference was not statistically significant. Atherosclerotic plaque formation and serum lipid changes: AS group were significantly worse than NC group (p < .05), and AS + PD group were worse than AS group. The results of the corresponding qualitative and quantitative analyses of kidney tissue in experimental animals gradually deteriorated in the NC group, PD group, AS group and AS + PD group and worsened sequentially. Renal function parameters: the content of BUN in AS group was higher than that in PD group, the difference was not statistically significant; Scr in AS group was significantly higher than that in PD group (p < .05); the contents of BUN and Scr in AS + PD group were higher than those in AS group, the difference was not statistically significant. Glomerular and tubular damage scores: AS group were higher than PD group, the difference was not statistically significant; AS + PD group were significantly higher than AS group (p < .001). The ratio of glomerular mesangial matrix to glomerular area and the percentage of renal fibrosis area: AS group were significantly higher than PD group (p < .001), and AS + PD group were significantly higher than AS group (p < .001). Expression of inflammatory cytokines: AS group was higher than PD group, the difference was not statistically significant; AS + PD group was significantly higher than AS group (p < .05). CONCLUSION: Both PD and AS can aggravate the inflammatory stress of kidney tissue and cause the damage of kidney tissue, and the inflammatory increase and damage effect of AS is stronger; PD can promote kidney damage of atherosclerotic mice by aggravating the renal inflammation in atherosclerotic mice; renal function parameters were not completely synchronized with the changes of renal inflammation and histopathology in each group of mice; PD can promote AS, periodontal inflammation in mice with AS is more severe, and the special changes of blood lipids in mice with AS are closely related to the above results.